Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 18 additions & 77 deletions dmriqcpy/analysis/stats.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,10 @@
# -*- coding: utf-8 -*-
import os

import nibabel as nib
import numpy as np
import os
import pandas as pd

from dmriqcpy.analysis.utils import get_stats_dataframes


def stats_mean_median(column_names, filenames):
Expand All @@ -26,8 +27,6 @@ def stats_mean_median(column_names, filenames):
across subjects.
"""
values = []
import time
sub_filenames = [os.path.basename(curr_subj).split('.')[0] for curr_subj in filenames]

for filename in filenames:
data = nib.load(filename).get_data()
Expand All @@ -40,24 +39,14 @@ def stats_mean_median(column_names, filenames):
mean = np.mean(data[data > 0])
median = np.median(data[data > 0])

values.append(
[mean, median])

stats_per_subjects = pd.DataFrame(values, index=sub_filenames,
columns=column_names)

stats_across_subjects = pd.DataFrame([stats_per_subjects.mean(),
stats_per_subjects.std(),
stats_per_subjects.min(),
stats_per_subjects.max()],
index=['mean', 'std', 'min', 'max'],
columns=column_names)
values.append([mean, median])

return stats_per_subjects, stats_across_subjects
return get_stats_dataframes(filenames, values, column_names)


def stats_mean_in_tissues(column_names, images, wm_images, gm_images,
csf_images):
def stats_mean_in_tissues(
column_names, images, wm_images, gm_images, csf_images
):
"""
Compute mean value in WM, GM and CSF mask.

Expand All @@ -82,7 +71,6 @@ def stats_mean_in_tissues(column_names, images, wm_images, gm_images,
DataFrame containing mean, std, min and max of mean across subjects.
"""
values = []
sub_images = [os.path.basename(curr_subj).split('.')[0] for curr_subj in images]

for i in range(len(images)):
data = nib.load(images[i]).get_data()
Expand All @@ -95,20 +83,9 @@ def stats_mean_in_tissues(column_names, images, wm_images, gm_images,
data_csf = np.mean(data[csf > 0])
data_max = np.max(data[wm > 0])

values.append(
[data_wm, data_gm, data_csf, data_max])
values.append([data_wm, data_gm, data_csf, data_max])

stats_per_subjects = pd.DataFrame(values, index=sub_images,
columns=column_names)

stats_across_subjects = pd.DataFrame([stats_per_subjects.mean(),
stats_per_subjects.std(),
stats_per_subjects.min(),
stats_per_subjects.max()],
index=['mean', 'std', 'min', 'max'],
columns=column_names)

return stats_per_subjects, stats_across_subjects
return get_stats_dataframes(images, values, column_names)


def stats_frf(column_names, filenames):
Expand All @@ -130,22 +107,12 @@ def stats_frf(column_names, filenames):
DataFrame containing mean, std, min and max of mean across subjects.
"""
values = []

for filename in filenames:
frf = np.loadtxt(filename)
values.append([frf[0], frf[1], frf[3]])

sub_filenames = [os.path.basename(curr_subj).split('.')[0] for curr_subj in filenames]
stats_per_subjects = pd.DataFrame(values,index=sub_filenames,
columns=column_names)

stats_across_subjects = pd.DataFrame([stats_per_subjects.mean(),
stats_per_subjects.std(),
stats_per_subjects.min(),
stats_per_subjects.max()],
index=['mean', 'std', 'min', 'max'],
columns=column_names)

return stats_per_subjects, stats_across_subjects
return get_stats_dataframes(filenames, values, column_names)


def stats_tractogram(column_names, tractograms):
Expand All @@ -167,24 +134,12 @@ def stats_tractogram(column_names, tractograms):
DataFrame containing mean, std, min and max of mean across subjects.
"""
values = []
sub_tractograms = [os.path.basename(curr_subj).split('.')[0] for curr_subj in tractograms]

for tractogram_file in tractograms:
tractogram = nib.streamlines.load(tractogram_file, lazy_load=True)
values.append([tractogram.header["nb_streamlines"]])

values.append(
[tractogram.header['nb_streamlines']])

stats_per_subjects = pd.DataFrame(values, index=sub_tractograms,
columns=column_names)

stats_across_subjects = pd.DataFrame([stats_per_subjects.mean(),
stats_per_subjects.std(),
stats_per_subjects.min(),
stats_per_subjects.max()],
index=['mean', 'std', 'min', 'max'],
columns=column_names)

return stats_per_subjects, stats_across_subjects
return get_stats_dataframes(tractograms, values, column_names)


def stats_mask_volume(column_names, images):
Expand All @@ -206,24 +161,10 @@ def stats_mask_volume(column_names, images):
DataFrame containing mean, std, min and max of mean across subjects.
"""
values = []
sub_images = [os.path.basename(curr_subj).split('.')[0] for curr_subj in images]

for image in images:
img = nib.load(image)
data = img.get_data()
voxel_volume = np.prod(img.header['pixdim'][1:4])
volume = np.count_nonzero(data) * voxel_volume

values.append([volume])

stats_per_subjects = pd.DataFrame(values, index=sub_images,
columns=column_names)

stats_across_subjects = pd.DataFrame([stats_per_subjects.mean(),
stats_per_subjects.std(),
stats_per_subjects.min(),
stats_per_subjects.max()],
index=['mean', 'std', 'min', 'max'],
columns=column_names)
voxel_volume = np.prod(img.header["pixdim"][1:4])
values.append([np.count_nonzero(img.get_data()) * voxel_volume])

return stats_per_subjects, stats_across_subjects
return get_stats_dataframes(images, values, column_names)
Loading