Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove the scikit learn restriction and bump minimal python version to 3.8 #233

Merged
merged 62 commits into from
Nov 8, 2023
Merged
Show file tree
Hide file tree
Changes from 60 commits
Commits
Show all changes
62 commits
Select commit Hold shift + click to select a range
ebbfa02
Remove the scikit learn restriction
otaviocv Aug 15, 2023
1c71637
Set minimal version to 3.7
otaviocv Aug 15, 2023
1319ae9
Fix linter and swap the type check in the metalearners
otaviocv Aug 15, 2023
c1b6bb9
Replace boston dataset by california
otaviocv Aug 15, 2023
01b1a46
rollback the type check change, linter will break
otaviocv Aug 15, 2023
fc26b8b
Remove list accessor of the california dataset
otaviocv Aug 15, 2023
55eab1e
Reformat imports
otaviocv Aug 15, 2023
b154784
Change acessors
otaviocv Aug 15, 2023
ff7ae18
Fix feature name
otaviocv Aug 15, 2023
c8eacd5
Remove trailing space
otaviocv Aug 15, 2023
cc9031e
Put the correct test value
otaviocv Aug 15, 2023
683795d
Change test value
otaviocv Aug 15, 2023
503becf
Change test value
otaviocv Aug 15, 2023
6e16427
Fix test pd extractors
otaviocv Aug 15, 2023
b7b7229
Fix transformation
otaviocv Aug 15, 2023
ba5e957
Fix type annotations
otaviocv Aug 15, 2023
5d2e0e3
Lint fix
otaviocv Aug 15, 2023
cd7b16a
Lint fix
otaviocv Aug 15, 2023
c2fb343
Put the correct version
otaviocv Aug 15, 2023
e724b67
Add changelog
otaviocv Aug 16, 2023
874a2d5
Bump lightgbm
otaviocv Aug 16, 2023
8c760b0
Add upper limits to deps
otaviocv Aug 17, 2023
3199366
Bump major
otaviocv Aug 24, 2023
bebc817
Increase major constraint of pandas
otaviocv Aug 24, 2023
0ce6f93
Remove upper limitation on xgboost
otaviocv Aug 24, 2023
d1c5a38
Remove silent unused keyword
otaviocv Nov 7, 2023
32dd710
Update a few types
otaviocv Nov 7, 2023
d09a4f4
Lint fix
otaviocv Nov 7, 2023
760343e
Add typing extensions for python 3.7 support
otaviocv Nov 7, 2023
15183e5
trick to avoid type checking for lists
otaviocv Nov 7, 2023
1961853
Fix classification tests
otaviocv Nov 7, 2023
c26703b
Try to replace ndarrays by numpy typing NDArrays
otaviocv Nov 7, 2023
4be93df
Change back ndarray
otaviocv Nov 7, 2023
8dca301
Reduce type list
otaviocv Nov 7, 2023
28bea55
Add one more type
otaviocv Nov 7, 2023
361517f
Add other types
otaviocv Nov 7, 2023
c62ec2e
Remove all other types
otaviocv Nov 7, 2023
7fd0220
Try to use numpy typing
otaviocv Nov 7, 2023
486150d
Drop python 3.7 support
otaviocv Nov 7, 2023
b099b49
Swap utils by testing in pandas assertion functions
otaviocv Nov 7, 2023
9817f67
In order to support pandas 2 it is required to bump xgboost up to ver…
otaviocv Nov 7, 2023
e39cb3e
Fix xgboost dmatrix tests
otaviocv Nov 7, 2023
60e3743
Fix rank categorical
otaviocv Nov 7, 2023
d43a5f9
Solve pd extractors test
otaviocv Nov 7, 2023
98a1ec5
Fix hash eval test
otaviocv Nov 7, 2023
4569ace
Fix lookup in ensemble learner
otaviocv Nov 7, 2023
00153f8
Add type annotation to the new functions
otaviocv Nov 7, 2023
780a9bd
Create conditional assertions based on python version
otaviocv Nov 8, 2023
0432e56
Remove necessity for typing extension and fix hash values
otaviocv Nov 8, 2023
d20dd44
Lint fix
otaviocv Nov 8, 2023
2730c07
Merge branch 'master' into otaviocv/remove-scikit-0-25-constraint
otaviocv Nov 8, 2023
c6bbca6
Fix mypi for multiclass classification for lgbm classifier
otaviocv Nov 8, 2023
cba723d
Bump catboost and joblib
otaviocv Nov 8, 2023
6b59bcb
Bump pytest
otaviocv Nov 8, 2023
abc28e8
Bump coverage packages
otaviocv Nov 8, 2023
740ba8a
Bump xdist
otaviocv Nov 8, 2023
d843bf5
Bump mypy
otaviocv Nov 8, 2023
59ebc35
Bump hypothesis
otaviocv Nov 8, 2023
cff7c3b
Rollback coverage bumps
otaviocv Nov 8, 2023
f9d9cd5
Update changelog
otaviocv Nov 8, 2023
eebd13c
Update changelog
otaviocv Nov 8, 2023
50a7c7e
Change hash test to match exactly 8 minor version
otaviocv Nov 8, 2023
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/push.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ jobs:
runs-on: ubuntu-20.04
strategy:
matrix:
python-version: ["3.6", "3.7", "3.8", "3.9"]
python-version: ["3.8", "3.9"]
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
Expand Down
6 changes: 6 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,11 @@
# Changelog

## [2.4.0] - 2023-08-16
otaviocv marked this conversation as resolved.
Show resolved Hide resolved
- **Enhancement**
- Remove support for python 3.6 and 3.7.
- Bumps in joblib, numpy, pandas, scikit-learn, statsmodels, toolz, catboost, lightgbm, shap, xgboost
and test auxiliary packages.

## [2.3.1] - 2023-04-11
- **Bugfix**
- Remove incorrect `lightgbm` import from common paths
Expand Down
12 changes: 6 additions & 6 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
joblib>=0.13.2,<2
numpy>=1.16.4,<2
pandas>=0.24.1,<2
scikit-learn>=0.21.2,<0.25.0
statsmodels>=0.9.0,<1
toolz>=0.9.0,<1
joblib>=1.3.2,<2
numpy>=1.24.4,<2
pandas>=2,<3
scikit-learn>=1,<2
statsmodels>=0.14.0,<1
toolz>=0.12.0,<1
2 changes: 1 addition & 1 deletion requirements_catboost.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
catboost>=0.14.2,<2
catboost>=1.2.2,<2
2 changes: 1 addition & 1 deletion requirements_lgbm.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
lightgbm>=2.2.2,<4
lightgbm>=4,<5
8 changes: 4 additions & 4 deletions requirements_test.txt
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
pytest>=4.2.1,<7
pytest>=7.4.3,<8
pytest-cov>=2.6.1,<3
pytest-xdist>=1.26.1,<3
mypy>=0.670,<1
pytest-xdist>=3.3.1,<4
mypy>=1.6.1,<2
coverage<5
codecov>=2.0,<3
hypothesis>=5.5.4,<7
hypothesis>=6.88.3,<7
4 changes: 2 additions & 2 deletions requirements_tools.txt
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
shap>=0.31.0,<=0.40
swifter>=0.284,<2
shap>=0.43,<1
swifter>=0.24,<2
2 changes: 1 addition & 1 deletion requirements_xgboost.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
xgboost>=0.81,<1.5
xgboost>=2,<3
4 changes: 1 addition & 3 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ def requirements_from_pip(filename='requirements.txt'):
long_description=long_description,
long_description_content_type="text/markdown",
url='https://github.com/nubank/{:s}'.format(REPO_NAME),
python_requires='>=3.6.2,<3.10',
python_requires='>=3.8,<3.10',
author="Nubank",
package_dir={'': 'src'},
packages=find_packages('src'),
Expand All @@ -52,8 +52,6 @@ def requirements_from_pip(filename='requirements.txt'):
include_package_data=True,
zip_safe=False,
classifiers=[
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9'
])
2 changes: 1 addition & 1 deletion src/fklearn/resources/VERSION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
2.3.1
3.0.0
194 changes: 118 additions & 76 deletions src/fklearn/training/classification.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,15 @@
from typing import List, Any, Optional, Callable, Tuple, Union, TYPE_CHECKING
from typing import List, Any, Optional, Callable, Tuple, Union, TYPE_CHECKING, Literal

import numpy as np
import numpy.typing as npt
import pandas as pd
from pathlib import Path
from toolz import curry, merge, assoc
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn import __version__ as sk_version

from fklearn.types import LearnerReturnType, LogType
from fklearn.types import LearnerReturnType, LearnerLogType, LogType
from fklearn.common_docstrings import learner_return_docstring, learner_pred_fn_docstring
from fklearn.training.utils import log_learner_time, expand_features_encoded

Expand Down Expand Up @@ -83,16 +84,19 @@ def p(new_df: pd.DataFrame) -> pd.DataFrame:

p.__doc__ = learner_pred_fn_docstring("logistic_classification_learner")

log = {'logistic_classification_learner': {
'features': features,
'target': target,
'parameters': merged_params,
'prediction_column': prediction_column,
'package': "sklearn",
'package_version': sk_version,
'feature_importance': dict(zip(features, clf.coef_.flatten())),
'training_samples': len(df)},
'object': clf}
log = {
'logistic_classification_learner': {
'features': features,
'target': target,
'parameters': merged_params,
'prediction_column': prediction_column,
'package': "sklearn",
'package_version': sk_version,
'feature_importance': dict(zip(features, clf.coef_.flatten())),
'training_samples': len(df)
},
'object': clf
}

return p, p(df), log

Expand Down Expand Up @@ -174,13 +178,21 @@ def xgb_classification_learner(df: pd.DataFrame,

features = features if not encode_extra_cols else expand_features_encoded(df, features)

dtrain = xgb.DMatrix(df[features].values, label=df[target].values, feature_names=map(str, features), weight=weights)
dtrain = xgb.DMatrix(
df[features].values,
label=df[target].values,
feature_names=list(map(str, features)),
weight=weights
)

bst = xgb.train(params, dtrain, num_estimators)

def p(new_df: pd.DataFrame, apply_shap: bool = False) -> pd.DataFrame:

dtest = xgb.DMatrix(new_df[features].values, feature_names=map(str, features))
dtest = xgb.DMatrix(
new_df[features].values,
feature_names=list(map(str, features))
)

pred = bst.predict(dtest)
if params["objective"] == "multi:softprob":
Expand Down Expand Up @@ -218,16 +230,19 @@ def p(new_df: pd.DataFrame, apply_shap: bool = False) -> pd.DataFrame:

p.__doc__ = learner_pred_fn_docstring("xgb_classification_learner", shap=True)

log = {'xgb_classification_learner': {
'features': features,
'target': target,
'prediction_column': prediction_column,
'package': "xgboost",
'package_version': xgb.__version__,
'parameters': assoc(params, "num_estimators", num_estimators),
'feature_importance': bst.get_score(),
'training_samples': len(df)},
'object': bst}
log = {
'xgb_classification_learner': {
'features': features,
'target': target,
'prediction_column': prediction_column,
'package': "xgboost",
'package_version': xgb.__version__,
'parameters': assoc(params, "num_estimators", num_estimators),
'feature_importance': bst.get_score(),
'training_samples': len(df)
},
'object': bst
}

return p, p(df), log

Expand Down Expand Up @@ -393,16 +408,19 @@ def p(new_df: pd.DataFrame, apply_shap: bool = False) -> pd.DataFrame:

p.__doc__ = learner_pred_fn_docstring("catboost_classification_learner", shap=True)

log = {'catboost_classification_learner': {
'features': features,
'target': target,
'prediction_column': prediction_column,
'package': "catboost",
'package_version': catboost.__version__,
'parameters': assoc(params, "num_estimators", num_estimators),
'feature_importance': cbr.feature_importances_,
'training_samples': len(df)},
'object': cbr}
log = {
'catboost_classification_learner': {
'features': features,
'target': target,
'prediction_column': prediction_column,
'package': "catboost",
'package_version': catboost.__version__,
'parameters': assoc(params, "num_estimators", num_estimators),
'feature_importance': cbr.feature_importances_,
'training_samples': len(df)
},
'object': cbr
}

return p, p(df), log

Expand Down Expand Up @@ -501,29 +519,34 @@ def p(new_df: pd.DataFrame) -> pd.DataFrame:

@curry
@log_learner_time(learner_name='lgbm_classification_learner')
def lgbm_classification_learner(df: pd.DataFrame,
features: List[str],
target: str,
learning_rate: float = 0.1,
num_estimators: int = 100,
extra_params: Optional[LogType] = None,
prediction_column: str = "prediction",
weight_column: Optional[str] = None,
encode_extra_cols: bool = True,
valid_sets: Optional[List[pd.DataFrame]] = None,
valid_names: Optional[List[str]] = None,
feval: Optional[Union[
Callable[[np.ndarray, pd.DataFrame], Tuple[str, float, bool]],
List[Callable[[np.ndarray, pd.DataFrame], Tuple[str, float, bool]]]]
] = None,
init_model: Optional[Union[str, Path, 'Booster']] = None,
feature_name: Union[List[str], str] = 'auto',
categorical_feature: Union[List[str], List[int], str] = 'auto',
keep_training_booster: bool = False,
callbacks: Optional[List[Callable]] = None,
dataset_init_score: Optional[Union[
List, List[List], np.ndarray, pd.Series, pd.DataFrame]
] = None) -> LearnerReturnType:
def lgbm_classification_learner(
df: pd.DataFrame,
features: List[str],
target: str,
learning_rate: float = 0.1,
num_estimators: int = 100,
extra_params: Optional[LogType] = None,
prediction_column: str = "prediction",
weight_column: Optional[str] = None,
encode_extra_cols: bool = True,
valid_sets: Optional[List[pd.DataFrame]] = None,
valid_names: Optional[List[str]] = None,
feval: Optional[Union[
Union[Callable[[npt.NDArray, Any], Tuple[str, float, bool]],
Callable[[npt.NDArray, Any], List[Tuple[str, float, bool]]]],
List[Union[Callable[[npt.NDArray, Any],
Tuple[str, float, bool]],
Callable[[npt.NDArray, Any],
List[Tuple[str, float, bool]]]]],
None
]] = None,
init_model: Optional[Union[str, Path, 'Booster']] = None,
feature_name: Union[List[str], Literal['auto']] = 'auto',
categorical_feature: Union[List[str], List[int], Literal['auto']] = 'auto',
keep_training_booster: bool = False,
callbacks: Optional[List[Callable]] = None,
dataset_init_score: Optional[Union[List, List[List], npt.NDArray, pd.Series, pd.DataFrame]] = None
) -> LearnerReturnType:
"""
Fits an LGBM classifier to the dataset.

Expand Down Expand Up @@ -632,20 +655,37 @@ def lgbm_classification_learner(df: pd.DataFrame,

features = features if not encode_extra_cols else expand_features_encoded(df, features)

dtrain = lgbm.Dataset(df[features].values, label=df[target], feature_name=list(map(str, features)), weight=weights,
silent=True, init_score=dataset_init_score)

bst = lgbm.train(params=params, train_set=dtrain, num_boost_round=num_estimators, valid_sets=valid_sets,
valid_names=valid_names, feval=feval, init_model=init_model, feature_name=feature_name,
categorical_feature=categorical_feature, keep_training_booster=keep_training_booster,
callbacks=callbacks)
dtrain = lgbm.Dataset(
df[features].values,
label=df[target],
feature_name=list(map(str, features)),
weight=weights,
init_score=dataset_init_score
)

bst = lgbm.train(
params=params,
train_set=dtrain,
num_boost_round=num_estimators,
valid_sets=valid_sets,
valid_names=valid_names,
feval=feval,
init_model=init_model,
feature_name=feature_name,
categorical_feature=categorical_feature,
keep_training_booster=keep_training_booster,
callbacks=callbacks
)

def p(new_df: pd.DataFrame, apply_shap: bool = False) -> pd.DataFrame:
predictions = bst.predict(new_df[features].values)
if isinstance(predictions, List):
predictions = np.ndarray(predictions)
if is_multiclass_classification:
col_dict = {prediction_column + "_" + str(key): value
for (key, value) in enumerate(bst.predict(new_df[features].values).T)}
for (key, value) in enumerate(predictions.T)}
else:
col_dict = {prediction_column: bst.predict(new_df[features].values)}
col_dict = {prediction_column: predictions}

if apply_shap:
import shap
Expand Down Expand Up @@ -675,16 +715,18 @@ def p(new_df: pd.DataFrame, apply_shap: bool = False) -> pd.DataFrame:

p.__doc__ = learner_pred_fn_docstring("lgbm_classification_learner", shap=True)

log = {'lgbm_classification_learner': {
'features': features,
'target': target,
'prediction_column': prediction_column,
'package': "lightgbm",
'package_version': lgbm.__version__,
'parameters': assoc(params, "num_estimators", num_estimators),
'feature_importance': dict(zip(features, bst.feature_importance().tolist())),
'training_samples': len(df)},
'object': bst}
log: LearnerLogType = {
'lgbm_classification_learner': {
'features': features,
'target': target,
'prediction_column': prediction_column,
'package': "lightgbm",
'package_version': lgbm.__version__,
'parameters': assoc(params, "num_estimators", num_estimators),
'feature_importance': dict(zip(features, bst.feature_importance().tolist())),
'training_samples': len(df)},
'object': bst
}

return p, p(df), log

Expand Down
10 changes: 8 additions & 2 deletions src/fklearn/training/ensemble.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
from typing import Any, Dict, List, TypeVar

import numpy as np
import numpy.typing as npt
import pandas as pd
from toolz import curry, assoc, compose

Expand Down Expand Up @@ -136,10 +138,14 @@ def xgb_octopus_classification_learner(train_set: pd.DataFrame,
def p(df: pd.DataFrame) -> pd.DataFrame:
pred_fn = compose(*pred_fns.values())

def lookup(df: pd.DataFrame) -> npt.NDArray:
idx, cols = pd.factorize(df.pred_bin.values.squeeze())
output = df.reindex(cols, axis=1).to_numpy()[np.arange(len(df)), idx]
return output

return (pred_fn(df)
.assign(pred_bin=prediction_column + "_bin_" + df[train_split_col].astype(str))
.assign(prediction=lambda d: d.lookup(d.index.values,
d.pred_bin.values.squeeze()))
.assign(prediction=lookup)
.rename(index=str, columns={"prediction": prediction_column})
.drop("pred_bin", axis=1))

Expand Down
Loading