forked from avehtari/ROS-Examples
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
282 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
data { | ||
int N; | ||
vector[N] x; | ||
int y[N]; | ||
} | ||
parameters { | ||
real a; | ||
real b; | ||
} | ||
model { | ||
y ~ bernoulli_logit(a + b*x); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
#' --- | ||
#' title: "Regression and Other Stories: Robit" | ||
#' author: "Andrew Gelman, Jennifer Hill, Aki Vehtari" | ||
#' date: "`r format(Sys.Date())`" | ||
#' output: | ||
#' html_document: | ||
#' theme: readable | ||
#' toc: true | ||
#' toc_depth: 2 | ||
#' toc_float: true | ||
#' code_download: true | ||
#' --- | ||
|
||
#' Comparison of robit and logit models for binary data. See Chapter | ||
#' 15 in Regression and Other Stories. | ||
#' | ||
#' ------------- | ||
#' | ||
|
||
#+ setup, include=FALSE | ||
knitr::opts_chunk$set(message=FALSE, error=FALSE, warning=FALSE, comment=NA) | ||
# switch this to TRUE to save figures in separate files | ||
savefigs <- FALSE | ||
|
||
#' #### Load packages | ||
library("rprojroot") | ||
root<-has_file(".ROS-Examples-root")$make_fix_file() | ||
library("cmdstanr") | ||
options(mc.cores = 1) | ||
library("ggdist") | ||
logit <- qlogis | ||
invlogit <- plogis | ||
|
||
#' ## Generate data from logit model | ||
|
||
# set the random seed to get reproducible results | ||
# change the seed to experiment with variation due to random noise | ||
set.seed(1234) | ||
N <- 50 | ||
x <- runif(N, -9, 9) | ||
a <- 0 | ||
b <- 0.8 | ||
p <- invlogit(a + b*x) | ||
y <- rbinom(N, 1, p) | ||
df <- 4 | ||
data_1 <- list(N=N, x=x, y=y, df=df) | ||
|
||
#' ## Fit logit and probit models using the simulated data | ||
#' | ||
#' #### Show Stan code for the models | ||
writeLines(readLines(root("Robit","logit.stan"))) | ||
writeLines(readLines(root("Robit","robit.stan"))) | ||
|
||
#' #### Compile models | ||
logit_model <- cmdstan_model("logit.stan") | ||
robit_model <- cmdstan_model("robit.stan") | ||
|
||
#' #### Sample and compute posterior medians | ||
fit_logit_1 <- logit_model$sample(data=data_1, refresh=0) | ||
print(fit_logit_1) | ||
a_hat_logit_1 <- median(fit_logit_1$draws("a")) | ||
b_hat_logit_1 <- median(fit_logit_1$draws("b")) | ||
|
||
#' #### Sample and compute posterior medians | ||
fit_robit_1 <- robit_model$sample(data=data_1, refresh=0) | ||
print(fit_robit_1) | ||
a_hat_robit_1 <- median(fit_robit_1$draws("a")) | ||
b_hat_robit_1 <- median(fit_robit_1$draws("b")) | ||
|
||
#' #### Plot | ||
if (savefigs) pdf("logistic2b.pdf", height=4, width=6) | ||
#+ | ||
par(mar=c(3,3,2,1), mgp=c(1.5,.5,0), tck=-.01) | ||
plot(data_1$x, data_1$y, yaxt="n", main="Data from a logistic regression", xlab="x", ylab="y") | ||
axis(2, c(0,1)) | ||
curve(invlogit(a_hat_logit_1 + b_hat_logit_1*x), add=TRUE, lty=2) | ||
curve(pstudent_t(a_hat_robit_1 + b_hat_robit_1*x, data_1$df, 0, sqrt((data_1$df-2)/data_1$df)), add=TRUE, lty=1) | ||
legend (1, .3, c("fitted logistic regression", "fitted robit regression"), lty=c(2,1), cex=.8) | ||
#+ eval=FALSE, include=FALSE | ||
if (savefigs) dev.off() | ||
|
||
#' ## Add an outlier by flipping the class of one observation | ||
low_value <- (1:N)[x==sort(x)[4]] | ||
data_2 <- data_1 | ||
data_2$y[low_value] <- 1 | ||
|
||
#' #### Sample and compute posterior medians | ||
fit_logit_2 <- logit_model$sample(data=data_2, refresh=0) | ||
print(fit_logit_2) | ||
a_hat_logit_2 <- median(fit_logit_2$draws("a")) | ||
b_hat_logit_2 <- median(fit_logit_2$draws("b")) | ||
|
||
#' #### Sample and compute posterior medians | ||
fit_robit_2 <- robit_model$sample(data=data_2, refresh=0) | ||
print(fit_robit_2) | ||
a_hat_robit_2 <- median(fit_robit_2$draws("a")) | ||
b_hat_robit_2 <- median(fit_robit_2$draws("b")) | ||
|
||
#' Plot | ||
if (savefigs) pdf("logistic2a.pdf", height=4, width=6) | ||
#+ | ||
par(mar=c(3,3,2,1), mgp=c(1.5,.5,0), tck=-.01) | ||
plot(data_2$x, data_2$y, yaxt="n", main="Contaminated data", xlab="x", ylab="y") | ||
axis(2, c(0,1)) | ||
curve(invlogit(a_hat_logit_2 + b_hat_logit_2*x), add=TRUE, lty=2) | ||
curve(pstudent_t(a_hat_robit_2 + b_hat_robit_2*x, data_2$df, 0, sqrt((data_2$df-2)/data_2$df)), add=TRUE, lty=1) | ||
legend (1, .3, c("fitted logistic regression", "fitted robit regression"), lty=c(2,1), cex=.8) | ||
#+ eval=FALSE, include=FALSE | ||
if (savefigs) dev.off() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
--- | ||
title: "Regression and Other Stories: Robit" | ||
author: "Andrew Gelman, Jennifer Hill, Aki Vehtari" | ||
date: "`r format(Sys.Date())`" | ||
output: | ||
html_document: | ||
theme: readable | ||
toc: true | ||
toc_depth: 2 | ||
toc_float: true | ||
code_download: true | ||
--- | ||
Comparison of robit and logit models for binary data. See Chapter | ||
15 in Regression and Other Stories. | ||
|
||
------------- | ||
|
||
|
||
```{r setup, include=FALSE} | ||
knitr::opts_chunk$set(message=FALSE, error=FALSE, warning=FALSE, comment=NA) | ||
# switch this to TRUE to save figures in separate files | ||
savefigs <- FALSE | ||
``` | ||
|
||
#### Load packages | ||
|
||
```{r } | ||
library("rprojroot") | ||
root<-has_file(".ROS-Examples-root")$make_fix_file() | ||
library("cmdstanr") | ||
options(mc.cores = 1) | ||
library("ggdist") | ||
logit <- qlogis | ||
invlogit <- plogis | ||
``` | ||
|
||
## Generate data from logit model | ||
|
||
```{r } | ||
# set the random seed to get reproducible results | ||
# change the seed to experiment with variation due to random noise | ||
set.seed(1234) | ||
N <- 50 | ||
x <- runif(N, -9, 9) | ||
a <- 0 | ||
b <- 0.8 | ||
p <- invlogit(a + b*x) | ||
y <- rbinom(N, 1, p) | ||
df <- 4 | ||
data_1 <- list(N=N, x=x, y=y, df=df) | ||
``` | ||
|
||
## Fit logit and probit models using the simulated data | ||
|
||
#### Show Stan code for the models | ||
|
||
```{r } | ||
writeLines(readLines(root("Robit","logit.stan"))) | ||
writeLines(readLines(root("Robit","robit.stan"))) | ||
``` | ||
|
||
#### Compile models | ||
|
||
```{r } | ||
logit_model <- cmdstan_model("logit.stan") | ||
robit_model <- cmdstan_model("robit.stan") | ||
``` | ||
|
||
#### Sample and compute posterior medians | ||
|
||
```{r } | ||
fit_logit_1 <- logit_model$sample(data=data_1, refresh=0) | ||
print(fit_logit_1) | ||
a_hat_logit_1 <- median(fit_logit_1$draws("a")) | ||
b_hat_logit_1 <- median(fit_logit_1$draws("b")) | ||
``` | ||
|
||
#### Sample and compute posterior medians | ||
|
||
```{r } | ||
fit_robit_1 <- robit_model$sample(data=data_1, refresh=0) | ||
print(fit_robit_1) | ||
a_hat_robit_1 <- median(fit_robit_1$draws("a")) | ||
b_hat_robit_1 <- median(fit_robit_1$draws("b")) | ||
``` | ||
|
||
#### Plot | ||
|
||
```{r } | ||
if (savefigs) pdf("logistic2b.pdf", height=4, width=6) | ||
``` | ||
```{r } | ||
par(mar=c(3,3,2,1), mgp=c(1.5,.5,0), tck=-.01) | ||
plot(data_1$x, data_1$y, yaxt="n", main="Data from a logistic regression", xlab="x", ylab="y") | ||
axis(2, c(0,1)) | ||
curve(invlogit(a_hat_logit_1 + b_hat_logit_1*x), add=TRUE, lty=2) | ||
curve(pstudent_t(a_hat_robit_1 + b_hat_robit_1*x, data_1$df, 0, sqrt((data_1$df-2)/data_1$df)), add=TRUE, lty=1) | ||
legend (1, .3, c("fitted logistic regression", "fitted robit regression"), lty=c(2,1), cex=.8) | ||
``` | ||
```{r eval=FALSE, include=FALSE} | ||
if (savefigs) dev.off() | ||
``` | ||
|
||
## Add an outlier by flipping the class of one observation | ||
|
||
```{r } | ||
low_value <- (1:N)[x==sort(x)[4]] | ||
data_2 <- data_1 | ||
data_2$y[low_value] <- 1 | ||
``` | ||
|
||
#### Sample and compute posterior medians | ||
|
||
```{r } | ||
fit_logit_2 <- logit_model$sample(data=data_2, refresh=0) | ||
print(fit_logit_2) | ||
a_hat_logit_2 <- median(fit_logit_2$draws("a")) | ||
b_hat_logit_2 <- median(fit_logit_2$draws("b")) | ||
``` | ||
|
||
#### Sample and compute posterior medians | ||
|
||
```{r } | ||
fit_robit_2 <- robit_model$sample(data=data_2, refresh=0) | ||
print(fit_robit_2) | ||
a_hat_robit_2 <- median(fit_robit_2$draws("a")) | ||
b_hat_robit_2 <- median(fit_robit_2$draws("b")) | ||
``` | ||
|
||
Plot | ||
|
||
```{r } | ||
if (savefigs) pdf("logistic2a.pdf", height=4, width=6) | ||
``` | ||
```{r } | ||
par(mar=c(3,3,2,1), mgp=c(1.5,.5,0), tck=-.01) | ||
plot(data_2$x, data_2$y, yaxt="n", main="Contaminated data", xlab="x", ylab="y") | ||
axis(2, c(0,1)) | ||
curve(invlogit(a_hat_logit_2 + b_hat_logit_2*x), add=TRUE, lty=2) | ||
curve(pstudent_t(a_hat_robit_2 + b_hat_robit_2*x, data_2$df, 0, sqrt((data_2$df-2)/data_2$df)), add=TRUE, lty=1) | ||
legend (1, .3, c("fitted logistic regression", "fitted robit regression"), lty=c(2,1), cex=.8) | ||
``` | ||
```{r eval=FALSE, include=FALSE} | ||
if (savefigs) dev.off() | ||
``` | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
data { | ||
int N; | ||
vector[N] x; | ||
int y[N]; | ||
real df; | ||
} | ||
parameters { | ||
real a; | ||
real b; | ||
} | ||
model { | ||
vector[N] p; | ||
for (n in 1:N) p[n] = student_t_cdf(a + b*x[n], df, 0, sqrt((df - 2)/df)); | ||
y ~ bernoulli(p); | ||
} |