forked from avehtari/ROS-Examples
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
448 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
#' --- | ||
#' title: "Regression and Other Stories: ChileSchools" | ||
#' author: "Andrew Gelman, Jennifer Hill, Aki Vehtari" | ||
#' date: "`r format(Sys.Date())`" | ||
#' output: | ||
#' html_document: | ||
#' theme: readable | ||
#' toc: true | ||
#' toc_depth: 2 | ||
#' toc_float: true | ||
#' code_download: true | ||
#' --- | ||
|
||
#' Code and figures for ChileSchools example. See Chapter 21 in | ||
#' Regression and Other Stories. | ||
#' | ||
#' Data are from | ||
#' | ||
#' - Chay, K. Y., McEwan, P. J., and Urquiola, M. (2005). The central | ||
#' role of noise in evaluating interventions that use test scores to | ||
#' rank schools. American Economic Review 95, 1237–1258. | ||
#' | ||
#' ------------- | ||
#' | ||
|
||
#+ setup, include=FALSE | ||
knitr::opts_chunk$set(message=FALSE, error=FALSE, warning=FALSE, comment=NA) | ||
# switch this to TRUE to save figures in separate files | ||
savefigs <- FALSE | ||
|
||
#' #### Load packages | ||
library("rprojroot") | ||
root<-has_file(".ROS-Examples-root")$make_fix_file() | ||
library("foreign") | ||
library("arm") | ||
library("rstanarm") | ||
library("brms") | ||
library("ivpack") | ||
|
||
#' #### Load data | ||
#' | ||
#' The outcomes in these analyses are the *gain scores* between 88 and 92. | ||
chile <- read.csv(root("ChileSchools/data","chile.csv")) | ||
print(head(chile), digits=3) | ||
|
||
#' ## Fit models | ||
fit_1a <- stan_glm(read92 ~ eligible + rule2, data=chile, refresh=0) | ||
fit_1b <- stan_glm(read92 ~ eligible + rule2, data=chile, subset = abs(rule2)<5, refresh=0) | ||
|
||
fit_2b <- stan_glm(read92 ~ eligible + rule2 + eligible:rule2, data=chile, subset = abs(rule2)<5, refresh=0) | ||
|
||
fit_3a <- stan_glm(read92 ~ eligible + rule2 + read88 + math88, data=chile, refresh=0) | ||
fit_3b <- stan_glm(read92 ~ eligible + rule2 + read88 + math88, data=chile, subset = abs(rule2)<5, refresh=0) | ||
|
||
chile$z_read88 <- (chile$read88 - mean(chile$read88))/sd(chile$read88) | ||
chile$z_math88 <- (chile$math88 - mean(chile$math88))/sd(chile$math88) | ||
fit_5a <- stan_glm(read92 ~ eligible + rule2 + z_read88 + z_math88 + eligible:z_read88, data=chile, refresh=0) | ||
fit_5b <- stan_glm(read92 ~ eligible + rule2 + z_read88 + z_math88 + eligible:z_read88, data=chile, subset = abs(rule2)<5, refresh=0) | ||
|
||
#' ## Plots | ||
whiteline <- function(a, b, from=-1000, to=1000){ | ||
curve(a + b*x, from=from, to=to, col="white", lwd=4, add=TRUE) | ||
curve(a + b*x, from=from, to=to, lwd=2, add=TRUE) | ||
} | ||
|
||
#+ eval=FALSE, include=FALSE | ||
if (savefigs) pdf(root("ChileSchools/figs","rd_chile_1a.pdf"), height=3.6, width=5, colormodel="gray") | ||
#+ | ||
par(mar=c(3,3,2,1), mgp=c(1.7, .5, 0), tck=-.01) | ||
yy <- chile$read92 | ||
xx <- chile$rule2 | ||
plot(y=yy, x=xx, type="n", | ||
xlab="Assignment variable", | ||
ylab="Post-test", bty="l", yaxt="n") | ||
axis(2, seq(0,100,20)) | ||
points(xx[chile$eligible==0],yy[chile$eligible==0],pch=20, | ||
cex=.7,col="gray60") | ||
points(xx[chile$eligible==1],yy[chile$eligible==1],pch=20, | ||
cex=.7) | ||
whiteline(coef(fit_1a)[1], coef(fit_1a)[3], from=0) | ||
whiteline(coef(fit_1a)[1] + coef(fit_1a)[2], coef(fit_1a)[3], to=0) | ||
abline(v=0, lwd=4, col="gray") | ||
mtext("All the data", 3, 1) | ||
#+ eval=FALSE, include=FALSE | ||
dev.off() | ||
|
||
#+ eval=FALSE, include=FALSE | ||
if (savefigs) pdf(root("ChileSchools/figs","rd_chile_1b.pdf"), height=3.6, width=5, colormodel="gray") | ||
#+ | ||
par(mar=c(3,3,2,1), mgp=c(1.7, .5, 0), tck=-.01) | ||
yy <- chile$read92 | ||
xx <- chile$rule2 | ||
plot(y=yy, x=xx, type="n", | ||
xlab="Assignment variable", | ||
ylab="Post-test", bty="l", yaxt="n", xlim=c(-5,5), xaxs="i") | ||
axis(2, seq(0,100,20)) | ||
points(xx[chile$eligible==0],yy[chile$eligible==0],pch=20, | ||
cex=.7,col="gray60") | ||
points(xx[chile$eligible==1],yy[chile$eligible==1],pch=20, | ||
cex=.7) | ||
whiteline(coef(fit_1b)[1], coef(fit_1b)[3], from=0) | ||
whiteline(coef(fit_1b)[1] + coef(fit_1b)[2], coef(fit_1b)[3], to=0) | ||
abline(v=0, lwd=4, col="gray") | ||
mtext("Restricting to data near the cutoff", 3, 1) | ||
#+ eval=FALSE, include=FALSE | ||
dev.off() | ||
|
||
#+ eval=FALSE, include=FALSE | ||
if (savefigs) pdf(root("ChileSchools/figs","rd_chile_2b.pdf"), height=3.6, width=5, colormodel="gray") | ||
#+ | ||
par(mar=c(3,3,2,1), mgp=c(1.7, .5, 0), tck=-.01) | ||
yy <- chile$read92 | ||
xx <- chile$rule2 | ||
plot(y=yy, x=xx, type="n", | ||
xlab="Assignment variable", | ||
ylab="Ppst-test", bty="l", yaxt="n", xlim=c(-5,5), xaxs="i") | ||
axis(2, seq(0,100,20)) | ||
points(xx[chile$eligible==0],yy[chile$eligible==0],pch=20, | ||
cex=.7,col="gray60") | ||
points(xx[chile$eligible==1],yy[chile$eligible==1],pch=20, | ||
cex=.7) | ||
whiteline(coef(fit_2b)[1], coef(fit_2b)[3], from=0) | ||
whiteline(coef(fit_2b)[1] + coef(fit_2b)[2], coef(fit_2b)[3] + coef(fit_2b)[4], to=0) | ||
abline(v=0, lwd=4, col="gray") | ||
mtext("Model with interaction", 3, 1) | ||
#+ eval=FALSE, include=FALSE | ||
dev.off() | ||
|
||
#+ eval=FALSE, include=FALSE | ||
if (savefigs) pdf(root("ChileSchools/figs","rd_chile_3b.pdf"), height=3.6, width=5, colormodel="gray") | ||
#+ | ||
par(mar=c(3,3,2,1), mgp=c(1.7, .5, 0), tck=-.01) | ||
yy <- chile$read92 - coef(fit_3b)[4] * (chile$read88 - mean(chile$read88)) - coef(fit_3b)[5] * (chile$math88 - mean(chile$math88)) | ||
xx <- chile$rule2 | ||
plot(y=yy, x=xx, type="n", | ||
xlab="Assignment variable", | ||
ylab="Adjusted outcome", bty="l", yaxt="n", xlim=c(-5,5), xaxs="i") | ||
axis(2, seq(-100,100,20)) | ||
points(xx[chile$eligible==0],yy[chile$eligible==0],pch=20, | ||
cex=.7,col="gray60") | ||
points(xx[chile$eligible==1],yy[chile$eligible==1],pch=20, | ||
cex=.7) | ||
whiteline(coef(fit_3b)[1] + coef(fit_3b)[4] *mean(chile$read88) + coef(fit_3b)[5] *mean(chile$math88), coef(fit_3b)[3], from=0) | ||
whiteline(coef(fit_3b)[1] + coef(fit_3b)[4] *mean(chile$read88) + coef(fit_3b)[5] *mean(chile$math88) + coef(fit_3b)[2], coef(fit_3b)[3], to=0) | ||
abline(v=0, lwd=4, col="gray") | ||
mtext("Adjusting for pre-test scores", 3, 1) | ||
#+ eval=FALSE, include=FALSE | ||
dev.off() | ||
|
||
#+ eval=FALSE, include=FALSE | ||
if (savefigs) pdf(root("ChileSchools/figs","rd_chile_4b.pdf"), height=3.6, width=5, colormodel="gray") | ||
#+ | ||
par(mar=c(3,3,2,1), mgp=c(1.7, .5, 0), tck=-.01) | ||
yy <- chile$read92 - coef(fit_3b)[4] * (chile$read88 - mean(chile$read88)) - coef(fit_3b)[5] * (chile$math88 - mean(chile$math88)) | ||
xx <- chile$rule2 | ||
n_bins <- 20 | ||
n <- length(xx) | ||
halfwidth <- 5 | ||
cutpoints <- c(seq(-halfwidth, halfwidth, length=n_bins+1)) | ||
xx_bin <- rep(NA, n_bins) | ||
yy_bin <- rep(NA, n_bins) | ||
for (i in 1:n_bins){ | ||
keep <- xx > cutpoints[i] & xx <= cutpoints[i+1] | ||
xx_bin[i] <- mean(xx[keep]) | ||
yy_bin[i] <- mean(yy[keep]) | ||
} | ||
plot(y=yy_bin, x=xx_bin, type="n", | ||
xlab="Assignment variable", | ||
ylab="Adjusted outcome", bty="l", yaxt="n", xlim=c(-halfwidth, halfwidth), xaxs="i") | ||
axis(2, seq(-100,100,1)) | ||
points(xx_bin[xx_bin>0], yy_bin[xx_bin>0],pch=20, | ||
cex=2, col="gray60") | ||
points(xx_bin[xx_bin<0], yy_bin[xx_bin<0],pch=20, | ||
cex=2) | ||
whiteline(coef(fit_3b)[1] + coef(fit_3b)[4] *mean(chile$read88) + coef(fit_3b)[5] *mean(chile$math88), coef(fit_3b)[3], from=0) | ||
whiteline(coef(fit_3b)[1] + coef(fit_3b)[4] *mean(chile$read88) + coef(fit_3b)[5] *mean(chile$math88) + coef(fit_3b)[2], coef(fit_3b)[3], to=0) | ||
abline(v=0, lwd=4, col="gray") | ||
mtext("Binned averages with same regression lines", 3, 1) | ||
#+ eval=FALSE, include=FALSE | ||
dev.off() | ||
|
||
#' ## Additional models | ||
|
||
#' #### Noncompliance rates | ||
mean(chile$p90[chile$eligible==0 & abs(chile$rule2) < 5]) # .053 | ||
mean(chile$p90[chile$eligible==1 & abs(chile$rule2) < 5]) # .606 | ||
|
||
#' #### IV model on restricted dataset | ||
# with brms as in IV section earlier in the chapter | ||
set.seed(1234) | ||
chile$diff_read92 <- chile$read92 - chile$read88 | ||
rd_f1 <- bf(p90 ~ eligible) | ||
rd_f2 <- bf(diff_read92 ~ p90) | ||
#+ results='hide' | ||
IV_brm_rd <- brm(formula=rd_f1 + rd_f2, data = chile[abs(chile$rule2) < 5,]) | ||
#+ | ||
print(IV_brm_rd, digits=3) | ||
# t.e. is 5.08 with s.e. of .90 | ||
|
||
#' #### Compare to IV regression by two-stage least squares | ||
summary(ivreg(formula = diff_read92 ~ p90 | eligible, data=chile, subset = abs(rule2) < 5)) | ||
# est is 5.09 with s.e. of .88 |
Oops, something went wrong.