Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 95 additions & 0 deletions gridfm_datakit/perturbations/load_perturbation.py
Original file line number Diff line number Diff line change
Expand Up @@ -567,6 +567,101 @@ def __call__(

return load_profiles

class PrecomputedProfile(LoadScenarioGeneratorBase):
"""Reads precomputed bus-demand scenarios and returns them as (n_buses, n_scenarios, 2).

CSV/XLSX columns:
- load_scenario : int scenario index (0..S-1)
- load : int BUS INDEX (0..n_buses-1) in *continuous indexing* used by Network
(i.e., after mapping to 0..n_buses-1)
- p_mw, q_mvar : floats
"""

def __init__(self, scenario_file: str):
self.scenario_file = scenario_file

def _read(self) -> pd.DataFrame:
p = self.scenario_file
if p.lower().endswith((".xlsx", ".xls")):
return pd.read_excel(p)
return pd.read_csv(p)

def __call__(
self,
net, # type: Network
n_scenarios: int,
scenario_log: str,
max_iter: int, # unused, kept for interface compatibility
seed: int,
) -> np.ndarray:
df = self._read()

required = {"load_scenario", "load", "p_mw", "q_mvar"}
missing = required - set(df.columns)
if missing:
raise ValueError(
f"Scenario file must contain columns {sorted(required)}; missing {sorted(missing)}. "
f"Got {list(df.columns)}"
)

df["load_scenario"] = df["load_scenario"].astype(int)
df["load"] = df["load"].astype(int)

n_buses = int(np.asarray(net.buses).shape[0])

# Scenario index validation (0..n_scenarios-1)
min_scenario = int(df["load_scenario"].min())
max_scenario = int(df["load_scenario"].max())
if min_scenario < 0 or max_scenario >= n_scenarios:
raise ValueError(
"Scenario file contains out-of-range scenario indices in column 'load_scenario'. "
f"Expected 0..{n_scenarios - 1}, got min={min_scenario}, max={max_scenario}."
)

# Bus index validation (continuous indices 0..n_buses-1)
min_bus = int(df["load"].min())
max_bus = int(df["load"].max())
if min_bus < 0 or max_bus >= n_buses:
raise ValueError(
"Scenario file contains out-of-range bus indices in column 'load'. "
f"Expected 0..{n_buses - 1}, got min={min_bus}, max={max_bus}."
)

# uniqueness of (load_scenario, load) pairs
dup_mask = df.duplicated(subset=["load_scenario", "load"])
if dup_mask.any():
dup_count = int(dup_mask.sum())
raise ValueError(
f"Scenario file contains {dup_count} duplicate (load_scenario, load) pairs. "
"Each pair must be unique."
)

# check: require all scenario-bus pairs present
expected = n_buses * n_scenarios
actual = len(df)
if actual != expected:
raise ValueError(
f"Scenario file must contain exactly {expected} rows "
f"({n_buses} buses x {n_scenarios} scenarios); got {actual}."
)

# Allocate output: (n_buses, n_scenarios, 2)
out = np.zeros((n_buses, n_scenarios, 2), dtype=float)

s = df["load_scenario"].to_numpy(dtype=int)
b = df["load"].to_numpy(dtype=int)
out[b, s, 0] = df["p_mw"].to_numpy(dtype=float)
out[b, s, 1] = df["q_mvar"].to_numpy(dtype=float)

if scenario_log:
with open(scenario_log, "a") as f:
f.write(
f"precomputed_profile: scenarios={n_scenarios}, buses={n_buses}, "
f"path={self.scenario_file}\n"
)

return out


if __name__ == "__main__":
"""
Expand Down
7 changes: 6 additions & 1 deletion gridfm_datakit/utils/param_handler.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
LoadScenarioGeneratorBase,
LoadScenariosFromAggProfile,
Powergraph,
PrecomputedProfile,
)
from typing import Dict, Any
import warnings
Expand Down Expand Up @@ -173,6 +174,7 @@ def get_load_scenario_generator(args: NestedNamespace) -> LoadScenarioGeneratorB
Note:
Currently supports 'agg_load_profile' and 'powergraph' generator types.
"""
print("args.generator: ", args.generator)
if args.generator == "agg_load_profile":
return LoadScenariosFromAggProfile(
args.agg_profile,
Expand All @@ -194,8 +196,11 @@ def get_load_scenario_generator(args: NestedNamespace) -> LoadScenarioGeneratorB
f"The following arguments are not used by the powergraph generator: {unused_args}",
UserWarning,
)


return Powergraph(args.agg_profile)
if args.generator == "precomputed_profile":
print("precomputed_profile being used")
return PrecomputedProfile(args.scenario_file)


def initialize_topology_generator(
Expand Down