Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: Fix feature transformation #79

Merged
merged 7 commits into from
Nov 1, 2024
Merged
40 changes: 33 additions & 7 deletions src/autogluon_assistant/transformer/feature_transformers/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ def _fit_dataframes(self, train_X: pd.DataFrame, train_y: pd.Series, **kwargs) -
def fit(self, task: TabularPredictionTask) -> "BaseFeatureTransformer":
try:
train_x = task.train_data.drop(
columns=task.columns_in_train_but_not_test + [task.test_id_column],
columns=task.columns_in_train_but_not_test + [task.train_id_column],
errors="ignore",
)
train_y = task.train_data[task.label_column]
Expand All @@ -47,21 +47,47 @@ def _transform_dataframes(self, train_X: pd.DataFrame, test_X: pd.DataFrame) ->
def transform(self, task: TabularPredictionTask) -> TabularPredictionTask:
try:
train_x = task.train_data.drop(
columns=task.columns_in_train_but_not_test + [task.test_id_column],
columns=task.columns_in_train_but_not_test + [task.train_id_column],
errors="ignore",
)
label_column_avaialable_in_test_set = False
if task.label_column in train_x.columns:
# Label Column also present in test data
# requires explicit dropping of the column
# from train set before feature transformation
train_x = train_x.drop(columns=[task.label_column])
train_y = task.train_data[task.label_column]
test_x = task.test_data.drop(columns=[task.test_id_column])

if task.test_id_column in task.test_data.columns:
# Skip if test_id_column is not found
test_x = task.test_data.drop(columns=[task.test_id_column])
else:
test_x = task.test_data
if task.label_column in test_x.columns:
# Label Column also present in test data
# requires explicit dropping of the column
# from test set before feature transformation
label_column_avaialable_in_test_set = True
test_x = test_x.drop(columns=[task.label_column])
test_y = task.test_data[task.label_column]

train_x, test_x = self._transform_dataframes(train_X=train_x, test_X=test_x)

# add back id and label columns
# add back label columns
transformed_train_data = pd.concat([train_x, train_y.rename(task.label_column)], axis=1)
if task.test_id_column in task.train_data.columns:
if label_column_avaialable_in_test_set:
# Add back label column to test set as it was available before
transformed_test_data = pd.concat([test_x, test_y.rename(task.label_column)], axis=1)
else:
transformed_test_data = test_x

# add back id columns
if task.train_id_column in task.train_data.columns:
transformed_train_data = pd.concat(
[transformed_train_data, task.train_data[task.test_id_column]], axis=1
[transformed_train_data, task.train_data[task.train_id_column]], axis=1
)
transformed_test_data = pd.concat([test_x, task.test_data[task.test_id_column]], axis=1)
if task.test_id_column in task.test_data.columns:
transformed_test_data = pd.concat([transformed_test_data, task.test_data[task.test_id_column]], axis=1)

task = copy.deepcopy(task)
task.train_data = transformed_train_data
Expand Down
Loading