Skip to content

Commit

Permalink
* update 2024-02-10 06:17:29
Browse files Browse the repository at this point in the history
  • Loading branch information
actions-user committed Feb 9, 2024
1 parent 6ce4954 commit deeefa7
Show file tree
Hide file tree
Showing 2 changed files with 13 additions and 1 deletion.
12 changes: 12 additions & 0 deletions arXiv_db/Malware/2024.md
Original file line number Diff line number Diff line change
Expand Up @@ -346,3 +346,15 @@
</details>

<details>

<summary>2024-02-07 22:19:08 - Classifying spam emails using agglomerative hierarchical clustering and a topic-based approach</summary>

- *F. Janez-Martino, R. Alaiz-Rodriguez, V. Gonzalez-Castro, E. Fidalgo, E. Alegre*

- `2402.05296v1` - [abs](http://arxiv.org/abs/2402.05296v1) - [pdf](http://arxiv.org/pdf/2402.05296v1)

> Spam emails are unsolicited, annoying and sometimes harmful messages which may contain malware, phishing or hoaxes. Unlike most studies that address the design of efficient anti-spam filters, we approach the spam email problem from a different and novel perspective. Focusing on the needs of cybersecurity units, we follow a topic-based approach for addressing the classification of spam email into multiple categories. We propose SPEMC-15K-E and SPEMC-15K-S, two novel datasets with approximately 15K emails each in English and Spanish, respectively, and we label them using agglomerative hierarchical clustering into 11 classes. We evaluate 16 pipelines, combining four text representation techniques -Term Frequency-Inverse Document Frequency (TF-IDF), Bag of Words, Word2Vec and BERT- and four classifiers: Support Vector Machine, N\"aive Bayes, Random Forest and Logistic Regression. Experimental results show that the highest performance is achieved with TF-IDF and LR for the English dataset, with a F1 score of 0.953 and an accuracy of 94.6%, and while for the Spanish dataset, TF-IDF with NB yields a F1 score of 0.945 and 98.5% accuracy. Regarding the processing time, TF-IDF with LR leads to the fastest classification, processing an English and Spanish spam email in and on average, respectively.

</details>

Loading

0 comments on commit deeefa7

Please sign in to comment.