The implementation of "DADM: Dual Alignment of Domain and Modality for Face Anti-spoofing".
Motivation of dual alignment of domain and modality:
An overview of the proposed DADM architecture:
- python 3.10
- torch 1.12.1
- torchvision 0.13.1
- cuda 11.4
Dataset.
Download the WMCA, CASIA-SURF, CASIA-CeFA, and PADISI-USC datasets.
Data Pre-processing.
Please refer to Data Preprocess.
Run like this:
CUDA_VISIBLE_DEVICES=0
python train_cross_lx.py --lr 5e-5 --batchsize 16 --modality RGBDIR --model dadm --train SURF CeFA USC --test WMCAPlease cite our paper if the code is helpful to your research.
@article{yang2025dadm,
title={Dadm: Dual alignment of domain and modality for face anti-spoofing},
author={Yang, Jingyi and Lin, Xun and Yu, Zitong and Zhang, Liepiao and Liu, Xin and Li, Hui and Yuan, Xiaochen and Cao, Xiaochun},
journal={arXiv preprint arXiv:2503.00429},
year={2025}
}

