-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
stock benchmark #2
Open
aa452948257
wants to merge
3
commits into
main
Choose a base branch
from
stock
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
import matplotlib.pyplot as plt | ||
import xorbits | ||
import xorbits.pandas as xpd | ||
import pandas as pd | ||
import numpy as np | ||
import time | ||
import warnings | ||
|
||
warnings.filterwarnings("ignore") | ||
|
||
|
||
def zscore(df): | ||
# | ||
return ((df - df.mean()) / df.std()).iloc[-1] | ||
|
||
|
||
def stock_benchmark(): | ||
data_path = '../test_csv/stock.csv' | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is it possible to get the file name from the parsed args? |
||
xorbits.init() | ||
|
||
p_stocks_df = pd.read_csv(data_path).iloc[:10000] | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Why don't we just use xorbits.pandas? |
||
x_stocks_df = xpd.read_csv(data_path, chunk_bytes=200 * 1024 * 1024).iloc[:10000] | ||
xorbits.run(x_stocks_df) | ||
|
||
# Calculating Moving Averages for Stock Prices | ||
start_time = time.time() | ||
p_stock_mean_df = p_stocks_df.groupby( | ||
['StockName']).rolling(window=10).mean(numeric_only=True)[['Open', 'High', 'Low', 'Close', 'Volume']] | ||
end_time = time.time() | ||
print("Pandas Calculating Moving Averages for Stock Prices Execution time: ", end_time - start_time) | ||
|
||
start_time = time.time() | ||
x_stock_mean_df = x_stocks_df.groupby( | ||
'StockName', group_keys=True | ||
).apply(lambda x: x.rolling(window=10).mean(numeric_only=True))[['Open', 'High', 'Low', 'Close', 'Volume']] | ||
xorbits.run(x_stock_mean_df) | ||
end_time = time.time() | ||
print("Xorbits Calculating Moving Averages for Stock Prices Execution time: ", end_time - start_time) | ||
|
||
# Returns | ||
start_time = time.time() | ||
p_stocks_df['Ret'] = p_stocks_df[['StockName', 'Close']].groupby(['StockName']).pct_change() | ||
end_time = time.time() | ||
print("Pandas Returns Execution time: ", end_time - start_time) | ||
|
||
start_time = time.time() | ||
x_stocks_ret_df = x_stocks_df[['StockName', 'Close']].groupby( | ||
'StockName', group_keys=True | ||
).apply(lambda x: x.pct_change()) | ||
|
||
x_stocks_ret_df = x_stocks_ret_df.reset_index(level=0) | ||
x_stocks_df['Ret'] = x_stocks_ret_df['Close'] | ||
xorbits.run(x_stocks_ret_df) | ||
end_time = time.time() | ||
print("Xorbits Returns Execution time: ", end_time - start_time) | ||
|
||
# Calculating the Moving Annualized Volatility of Stock Returns | ||
start_time = time.time() | ||
p_Volatility = p_stocks_df[['StockName', 'Ret']].groupby(['StockName']).rolling(window=10).std() * np.sqrt(252) | ||
end_time = time.time() | ||
print("Pandas Calculating the Moving Annualized Volatility of Stock Returns Execution time: ", | ||
end_time - start_time) | ||
|
||
start_time = time.time() | ||
x_Volatility = x_stocks_df[['StockName', 'Ret']].groupby( | ||
'StockName', group_keys=True | ||
).apply(lambda x: x.rolling(window=10).std()) * np.sqrt(252) | ||
|
||
xorbits.run(x_Volatility) | ||
end_time = time.time() | ||
print("Xorbits Calculating the Moving Annualized Volatility of Stock Returns Execution time: ", | ||
end_time - start_time) | ||
|
||
# Window Normalization | ||
start_time = time.time() | ||
tmp = p_stocks_df.groupby(['StockName'])['Ret'].rolling(window=10).apply(zscore).reset_index(level=0) | ||
p_stocks_df['Rolling_Nor_Ret'] = tmp['Ret'] | ||
end_time = time.time() | ||
print("Pandas Window Normalization Execution time: ", end_time - start_time) | ||
|
||
start_time = time.time() | ||
tmp = x_stocks_df[['StockName', 'Ret']].groupby( | ||
'StockName', group_keys=True | ||
)['Ret'].apply(lambda x: x.rolling(window=10).apply(zscore)).reset_index() | ||
xorbits.run(tmp) | ||
x_stocks_df['Rolling_Nor_Ret'] = tmp['Ret'] | ||
end_time = time.time() | ||
print("Xorbits Window Normalization Execution time: ", end_time - start_time) | ||
|
||
# Test equal | ||
pd.testing.assert_frame_equal(p_stocks_df, x_stocks_df.to_pandas()) | ||
print("Xorbits, Pandas, The same result") | ||
|
||
|
||
def stock_minute(): | ||
stock_df = pd.read_parquet('data.pq') | ||
|
||
# Calculate the average price and volume per stock for each date | ||
grouped_df = stock_df.groupby( | ||
[stock_df['symbol'], stock_df['date_time'].dt.date] | ||
).agg({'price': 'mean', 'volume': 'sum'}) | ||
|
||
# Calculate the average price and volume per stock for each hour | ||
hourly_data = stock_df.groupby( | ||
[stock_df['symbol'], stock_df['date_time'].dt.floor('H')] | ||
).agg({'price': 'mean', 'volume': 'sum'}) | ||
|
||
# Set the date_time column as the time series index | ||
stock_df.set_index('date_time', inplace=True) | ||
|
||
# Example 1: Calculate the hourly price change rate for each stock | ||
start_time = time.time() | ||
hourly_data['price_change'] = hourly_data.groupby('symbol')['price'].pct_change() | ||
end_time = time.time() | ||
print("Pandas Calculate the hourly price change rate for each stock Execution time: ", end_time - start_time) | ||
|
||
# Example 2: Create price labels based on price change | ||
hourly_data['price_label'] = hourly_data['price_change'].apply( | ||
lambda x: 'up' if x > 0 else 'down' if x < 0 else 'zero') | ||
|
||
# Example 3: Count the number of price labels for each stock | ||
price_label_counts = hourly_data.groupby(['symbol', 'price_label']).size().unstack() | ||
|
||
# Example 4: Calculate the volume rank for each stock every hour | ||
hourly_data['volume_rank'] = hourly_data.groupby(['symbol'])['volume'].rank(ascending=False) | ||
|
||
# Example 5: Calculate the average price curve for each stock per hour | ||
hourly_price_data = hourly_data['price'].unstack(level='symbol') | ||
|
||
# Example 6: Calculate the total volume for each stock per day | ||
daily_volume_sum = stock_df.groupby([pd.Grouper(freq='D'), 'symbol'])['volume'].sum() | ||
|
||
# Example 7: Calculate the weighted average price based on price and volume for each stock | ||
hourly_data['weighted_price'] = hourly_data['price'] * hourly_data['volume'] | ||
weighted_avg_price = hourly_data.groupby('symbol')['weighted_price'].sum() / hourly_data.groupby('symbol')[ | ||
'volume'].sum() | ||
|
||
# Example 8: Calculate the price volatility (standard deviation) for each stock per hour | ||
hourly_data['price_std'] = stock_df.groupby(['symbol', pd.Grouper(freq='H')])['price'].std() | ||
|
||
# Example 9: Calculate the price change statistics for each stock per hour | ||
price_change_stats = stock_df.groupby(['symbol', pd.Grouper(freq='H')])['price'].apply( | ||
lambda x: (x.max() - x.min()) / x.min()) | ||
|
||
# Example 10: Calculate the volume-weighted average price per hour for each stock | ||
hourly_data['volume_weighted_price'] = stock_df.groupby(['symbol', pd.Grouper(freq='H')]).apply( | ||
lambda x: (x['price'] * x['volume']).sum() / x['volume'].sum()) | ||
|
||
# Example 11: Calculate the price change based on the volume-weighted average price for each stock | ||
hourly_data['volume_weighted_price_change'] = hourly_data.groupby('symbol')['volume_weighted_price'].pct_change() | ||
|
||
# Example 12: Calculate the cumulative price change for each stock per hour | ||
hourly_data['price_cumulative_change'] = hourly_data.groupby('symbol')['price_change'].cumsum() | ||
|
||
# Example 13: Count the number of trades for each stock based on the first trade time per day | ||
daily_trade_count = stock_df.groupby(['symbol', pd.Grouper(freq='D')])['volume'].count() | ||
|
||
# Example 14: Calculate the number of price limit-up and limit-down occurrences per day for each stock | ||
stock_df['price_limit_up'] = stock_df.groupby(['symbol', pd.Grouper(freq='D')])['price'].diff() > 0.1 | ||
stock_df['price_limit_down'] = stock_df.groupby(['symbol', pd.Grouper(freq='D')])['price'].diff() < -0.1 | ||
price_limit_counts = stock_df.groupby(['symbol', pd.Grouper(freq='D')])[ | ||
['price_limit_up', 'price_limit_down']].sum() | ||
stock_df.drop('price_limit_up', axis=1, inplace=True) | ||
stock_df.drop('price_limit_down', axis=1, inplace=True) | ||
|
||
# Example 15: Calculate the peak trading volume per day for each stock | ||
daily_volume_peak = stock_df.groupby(['symbol', pd.Grouper(freq='D')])['volume'].max() | ||
|
||
# Example 16: Calculate the volatility based on the percentage change in daily trading volume for each stock | ||
stock_df['volume_pct'] = stock_df.groupby(['symbol', pd.Grouper(freq='D')])['volume'].pct_change() | ||
daily_volatility = stock_df.groupby(['symbol', pd.Grouper(freq='D')])['volume_pct'].std() | ||
stock_df.drop('volume_pct', axis=1, inplace=True) | ||
|
||
# GroupbyRolling Example 1: Calculate the rolling mean of price for each stock every hour | ||
price_mean_rolling = stock_df.groupby(['symbol'])['price'].rolling(window=5).mean().reset_index(level=0, drop=True) | ||
|
||
# GroupbyRolling Example 2: Calculate the rolling sum of volume for each stock every hour | ||
volume_sum_rolling = stock_df.groupby(['symbol'])['volume'].rolling(window=10).sum().reset_index(level=0, drop=True) | ||
|
||
# GroupbyRolling Example 3: Calculate the difference between the maximum and minimum price within each symbol and time window | ||
stock_df['price_range'] = stock_df.groupby('symbol')['price'].rolling(window=5).apply( | ||
lambda x: x.max() - x.min()).reset_index(level=0, drop=True) | ||
|
||
# GroupbyRolling Example 4: Calculate the weighted average of price and volume for each symbol within each time window | ||
stock_df['weighted_average'] = stock_df.groupby('symbol').apply( | ||
lambda x: np.average(x['price'], weights=x['volume'])).reset_index(level=0, drop=True) | ||
|
||
|
||
if __name__ == '__main__': | ||
stock_benchmark() | ||
# stock_minute() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do we have to filter all the warnings?