Skip to content

Commit

Permalink
Merge branch 'Readme'
Browse files Browse the repository at this point in the history
  • Loading branch information
alexlopezcifuentes committed Jan 16, 2020
2 parents 8a86fb5 + 166b523 commit 2a2dbf0
Showing 1 changed file with 28 additions and 5 deletions.
33 changes: 28 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,9 +1,25 @@
# Semantic-Aware Scene Recognition
<h1 align="center">
Semantic-Aware Scene Recognition
</h1>

<p align="center">
<a href="https://badge.fury.io/gh/vpulab%2FSemantic-Aware-Scene-Recognition">
<img src="https://badge.fury.io/gh/vpulab%2FSemantic-Aware-Scene- Recognition.svg" alt="GitHub version" height="18">
</a>
<a href="https://github.com/vpulab/Semantic-Aware-Scene-Recognition">
<img alt="GitHub license" src="https://img.shields.io/github/license/vpulab/Semantic-Aware-Scene-Recognition">
</a>
<a href="https://github.com/vpulab/Semantic-Aware-Scene-Recognition/stargazers"><img alt="GitHub stars" src="https://img.shields.io/github/stars/vpulab/Semantic-Aware-Scene-Recognition"></a>
</p>

Official Pytorch Implementation of [Semantic-Aware Scene Recognition](https://arxiv.org/abs/1909.02410) by Alejandro López-Cifuentes, Marcos Escudero-Viñolo, Jesús Bescós and Álvaro García-Martín.

This paper is currently under Peer Review Revision in Elsevier Pattern Recognition Journal.

![Example Focus](Docs/ExampleFocus.png)
<p align="center">
<img alt="ExampleFocus" src="/Docs/ExampleFocus.png">
</p>


## Summary
This paper propose to improve scene recognition by using object information to focalize learning during the training process. The main contributions of the paper are threefold:
Expand All @@ -13,7 +29,9 @@ This paper propose to improve scene recognition by using object information to f
- We validate the effectiveness of the proposed method through experimental results on public scene recognition datasets such as ADE20K, MIT Indoor 67, SUN 397 and Places365 obtaining state-of-the-art results.

The propose CNN architecture is as follows:
![Network Architecture](Docs/NetworkArchitecture.png)
<p align="center">
<img alt="NetworkArchitecture" src="/Docs/NetworkArchitecture.png">
</p>

## Results
### ADE20K Dataset
Expand All @@ -23,6 +41,7 @@ The propose CNN architecture is as follows:
| | &#10003; | 50.60 | 60.45| 72.10 | 12.17 |
| **&#10003;** | **&#10003;** | **62.55** | **73.25** | **82.75** | **27.00** |


### MIT Indoor 67 Dataset
| Method | Backbone| Number of Parameters | Top@1 |
|--|:--:|:--:|:--:|
Expand Down Expand Up @@ -153,11 +172,15 @@ If you find this work useful, please consider citing:
```
@article{lopez2019semantic,
title={Semantic-Aware Scene Recognition},
author={L{\'o}pez-Cifuentes, Alejandro and Escudero-Vi{\~n}olo, Marcos and Besc{\'o}s, Jes{\'u}s and Garc{\'\i}a, {\'A}lvaro},
author={L{\'o}pez-Cifuentes, Alejandro and Escudero-Vi{\~n}olo, Marcos and
Besc{\'o}s, Jes{\'u}s and Garc{\'\i}a, {\'A}lvaro},
journal={arXiv preprint arXiv:1909.02410},
year={2019}
}
```
## Acknowledgment
This study has been partially supported by the Spanish Government through its TEC2017-88169-R MobiNetVideo project.
![Logo Ministerio](Docs/LogoMinisterio.png)

<p align="center">
<img alt="LogoMinisterio" src="/Docs/LogoMinisterio.png">
</p>

0 comments on commit 2a2dbf0

Please sign in to comment.