Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions vllm_gaudi/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,3 +11,7 @@ def register_model():
from vllm_gaudi.models.qwen2_5_vl import HpuQwen2_5_VLForConditionalGeneration # noqa: F401
ModelRegistry.register_model("Qwen2_5_VLForConditionalGeneration",
"vllm_gaudi.models.qwen2_5_vl:HpuQwen2_5_VLForConditionalGeneration")

from vllm_gaudi.models.qwen3_vl import HpuQwen3_VLForConditionalGeneration # noqa: F401
ModelRegistry.register_model("Qwen3VLForConditionalGeneration",
"vllm_gaudi.models.qwen3_vl:HpuQwen3_VLForConditionalGeneration")
1 change: 1 addition & 0 deletions vllm_gaudi/models/qwen2_5_vl.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,6 +156,7 @@ def forward(
rotary_pos_emb_cos: torch.Tensor,
rotary_pos_emb_sin: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None, # Only used for HPU
max_seqlen: Optional[int] = None, # Only used for Flash Attention
) -> torch.Tensor:
# [s, b, c] --> [s, b, head * 3 * head_dim]
x, _ = self.qkv(x)
Expand Down
99 changes: 99 additions & 0 deletions vllm_gaudi/models/qwen3_vl.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
from torch import nn
from vllm.model_executor.layers.activation import get_act_fn
from vllm.config import VllmConfig
from vllm.model_executor.models.qwen3_vl import (
Qwen3VLForConditionalGeneration,
Qwen3_VisionTransformer,
Qwen3_VisionBlock,
)
from vllm.model_executor.models.utils import maybe_prefix

from vllm_gaudi.models.qwen2_5_vl import (HPUQwen2_5_VisionAttention)


class HPUQwen3_VisionBlock(Qwen3_VisionBlock):

def __init__(
self,
*,
dim: int,
num_heads: int,
mlp_hidden_dim: int,
act_fn,
norm_layer,
quant_config=None,
multimodal_config=None,
prefix: str = "",
):
super().__init__(
dim=dim,
num_heads=num_heads,
mlp_hidden_dim=mlp_hidden_dim,
act_fn=act_fn,
norm_layer=norm_layer,
quant_config=quant_config,
multimodal_config=multimodal_config,
prefix=prefix,
)

self.attn = HPUQwen2_5_VisionAttention(
embed_dim=dim,
num_heads=num_heads,
projection_size=dim,
quant_config=quant_config,
multimodal_config=multimodal_config,
prefix=f"{prefix}.attn",
)


class HPUQwen3_VisionTransformer(Qwen3_VisionTransformer):

def __init__(
self,
vision_config,
norm_eps: float = 1e-6,
quant_config=None,
multimodal_config=None,
prefix: str = "",
):
super().__init__(
vision_config=vision_config,
norm_eps=norm_eps,
quant_config=quant_config,
multimodal_config=multimodal_config,
prefix=prefix,
)

depth = vision_config.depth
norm_layer = lambda d: nn.LayerNorm(d, eps=norm_eps)

self.blocks = nn.ModuleList([
HPUQwen3_VisionBlock(
dim=self.hidden_size,
num_heads=self.num_heads,
mlp_hidden_dim=vision_config.intermediate_size,
act_fn=get_act_fn(vision_config.hidden_act),
norm_layer=norm_layer,
quant_config=quant_config,
multimodal_config=multimodal_config,
prefix=f"{prefix}.blocks.{layer_idx}",
) for layer_idx in range(depth)
])


class HpuQwen3_VLForConditionalGeneration(Qwen3VLForConditionalGeneration):

def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)

quant_config = getattr(self, "quant_config", None)
multimodal_config = getattr(vllm_config.model_config, "multimodal_config", None)

if hasattr(self, "visual") and self.visual is not None:
self.visual = HPUQwen3_VisionTransformer(
self.config.vision_config,
norm_eps=getattr(self.config, "rms_norm_eps", 1e-6),
quant_config=quant_config,
multimodal_config=multimodal_config,
prefix=maybe_prefix(prefix, "visual"),
)