Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 44 additions & 8 deletions detect_multi_threaded.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
import cv2
import tensorflow as tf
import multiprocessing
from multiprocessing import Queue, Pool
from multiprocessing import Queue, Pool, Manager
import time
from utils.detector_utils import WebcamVideoStream
import datetime
Expand All @@ -14,9 +14,9 @@
# Create a worker thread that loads graph and
# does detection on images in an input queue and puts it on an output queue


def worker(input_q, output_q, cap_params, frame_processed):
def worker(input_q, output_q, cap_params, frame_processed, boxes_dict=None):
print(">> loading frozen model for worker")
print(id(input_q))
detection_graph, sess = detector_utils.load_inference_graph()
sess = tf.Session(graph=detection_graph)
while True:
Expand All @@ -29,6 +29,12 @@ def worker(input_q, output_q, cap_params, frame_processed):

boxes, scores = detector_utils.detect_objects(
frame, detection_graph, sess)

#puts the boxes and scores into a queue if one is provided
if boxes_dict is not None:
boxes_dict.update( {"boxes" : boxes} )
boxes_dict.update( {"scores" : scores} )

# draw bounding boxes
detector_utils.draw_box_on_image(
cap_params['num_hands_detect'], cap_params["score_thresh"],
Expand Down Expand Up @@ -101,10 +107,20 @@ def worker(input_q, output_q, cap_params, frame_processed):
type=int,
default=5,
help='Size of the queue.')
parser.add_argument(
'-reuse',
'--reuse_frames',
dest='reuse_frames',
type=int,
default=0,
help='Reuse boxes from previous frame while model is not finished detecting.')
args = parser.parse_args()

input_q = Queue(maxsize=args.queue_size)
output_q = Queue(maxsize=args.queue_size)
boxes_dict = Manager().dict()
boxes_dict["boxes"]=None
boxes_dict["scores"]=None

video_capture = WebcamVideoStream(
src=args.video_source, width=args.width, height=args.height).start()
Expand All @@ -120,8 +136,13 @@ def worker(input_q, output_q, cap_params, frame_processed):
print(cap_params, args)

# spin up workers to paralleize detection.
pool = Pool(args.num_workers, worker,
(input_q, output_q, cap_params, frame_processed))
# use boxes_dict only when reusing frames.
if (args.reuse_frames > 0):
pool = Pool(args.num_workers, worker,
(input_q, output_q, cap_params, frame_processed, boxes_dict))
else:
pool = Pool(args.num_workers, worker,
(input_q, output_q, cap_params, frame_processed))

start_time = datetime.datetime.now()
num_frames = 0
Expand All @@ -135,15 +156,30 @@ def worker(input_q, output_q, cap_params, frame_processed):
frame = cv2.flip(frame, 1)
index += 1

input_q.put(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
output_frame = output_q.get()
print("in_q: " + str(input_q.qsize()))
print("out_q: " + str(output_q.qsize()))
if (args.reuse_frames > 0):
#if there is a next frame ready, get the next frame
if (output_q.qsize() > 0 or boxes_dict['scores'] is None):
input_q.put(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
try: output_frame = output_q.get_nowait()
except: output_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
#if there is none, use the old set of boxes
else:
output_frame = detector_utils.draw_box_on_image(
cap_params['num_hands_detect'], cap_params["score_thresh"],
boxes_dict['scores'], boxes_dict['boxes'], cap_params['im_width'], cap_params['im_height'],
cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
else:
input_q.put(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
output_frame = output_q.get()

output_frame = cv2.cvtColor(output_frame, cv2.COLOR_RGB2BGR)

elapsed_time = (datetime.datetime.now() - start_time).total_seconds()
num_frames += 1
fps = num_frames / elapsed_time
# print("frame ", index, num_frames, elapsed_time, fps)
# print("frame ", index, num_frames, elapsed_time, fps)

if (output_frame is not None):
if (args.display > 0):
Expand Down
1 change: 1 addition & 0 deletions utils/detector_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@ def draw_box_on_image(num_hands_detect, score_thresh, scores, boxes, im_width, i
p1 = (int(left), int(top))
p2 = (int(right), int(bottom))
cv2.rectangle(image_np, p1, p2, (77, 255, 9), 3, 1)
return image_np


# Show fps value on image.
Expand Down