forked from magicleap/SuperGluePretrainedNetwork
-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
284 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
--- | ||
BasedOnStyle: LLVM | ||
IndentWidth: 2 | ||
ColumnLimit: 100 | ||
--- |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
*.png | ||
libtorch/ | ||
*build*/ | ||
*.zip |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
cmake_minimum_required(VERSION 3.0 FATAL_ERROR) | ||
project(superglue) | ||
|
||
if (NOT CMAKE_BUILD_TYPE) | ||
message(STATUS "No build type selected, default to Release") | ||
set(CMAKE_BUILD_TYPE "Release") | ||
endif() | ||
|
||
find_package(Torch REQUIRED) | ||
find_package(OpenCV REQUIRED) | ||
|
||
add_executable(superglue superglue.cpp) | ||
target_link_libraries(superglue ${TORCH_LIBRARIES} ${OpenCV_LIBS}) | ||
include_directories(${OpenCV_INCLUDE_DIRS} include) | ||
|
||
set_property(TARGET superglue PROPERTY CXX_STANDARD 17) | ||
set(CMAKE_CXX_FLAGS "-Wall -Wextra ${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}") | ||
set(CMAKE_CXX_FLAGS_DEBUG "-ggdb3") | ||
set(CMAKE_CXX_FLAGS_RELEASE "-O3") | ||
|
||
file(COPY | ||
${CMAKE_CURRENT_SOURCE_DIR}/SuperPoint.zip | ||
${CMAKE_CURRENT_SOURCE_DIR}/SuperGlue.zip | ||
DESTINATION ${CMAKE_BINARY_DIR} | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
## SuperGlue C++ Demo | ||
|
||
### Building | ||
|
||
First, generate [TorchScript](https://pytorch.org/tutorials/advanced/cpp_export.html) module files | ||
of SuperPoint and SuperGlue by JIT-ing the annotated model definitions. | ||
|
||
```bash | ||
$ python3 ../jit.py | ||
``` | ||
|
||
This should output `SuperPoint.zip` and `SuperGlue.zip`. | ||
|
||
Building the demo project requires `libtorch` and OpenCV 3+. Follow the instructions in | ||
[*Installing C++ Distributions of PyTorch*](https://pytorch.org/cppdocs/installing.html) for `libtorch` setup. | ||
|
||
Create a build directory and configure CMake. | ||
|
||
```bash | ||
$ mkdir build && cd build | ||
$ cmake .. -DCMAKE_PREFIX_PATH=<libtorch path> | ||
$ make | ||
``` | ||
|
||
### Usage | ||
|
||
```.env | ||
$ ./superglue <image0> <image1> <downscaled_width> | ||
``` | ||
|
||
This will measure the average FPS over 50 iterations and outputs `matches.png` with a visualization of the detected keypoints and matches. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
#pragma once | ||
|
||
#include <torch/torch.h> | ||
|
||
#include <opencv2/core.hpp> | ||
#include <opencv2/imgcodecs.hpp> | ||
#include <opencv2/imgproc.hpp> | ||
|
||
#include <string> | ||
|
||
torch::Tensor read_image(const std::string &path, int target_width) { | ||
cv::Mat image = cv::imread(path, cv::IMREAD_GRAYSCALE); | ||
int target_height = std::lround((float)target_width / image.cols * image.rows); | ||
image.convertTo(image, CV_32F, 1.0f / 255.0f); | ||
cv::resize(image, image, {target_width, target_height}); | ||
|
||
torch::Tensor tensor = torch::from_blob(image.data, {1, 1, image.rows, image.cols}, | ||
torch::TensorOptions().dtype(torch::kFloat32)); | ||
return tensor.clone(); | ||
} | ||
|
||
cv::Mat tensor2mat(torch::Tensor tensor) { | ||
tensor = tensor.to(torch::kCPU).contiguous(); | ||
cv::Mat mat(tensor.size(-2), tensor.size(-1), CV_32F); | ||
std::memcpy((void *)mat.data, tensor.data_ptr(), sizeof(float) * tensor.numel()); | ||
return mat; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
#include <torch/script.h> | ||
#include <torch/torch.h> | ||
|
||
#include <chrono> | ||
#include <filesystem> | ||
#include <iostream> | ||
#include <utility> | ||
|
||
#include "io.h" | ||
#include "viz.h" | ||
|
||
using namespace torch; | ||
using namespace torch::indexing; | ||
namespace fs = std::filesystem; | ||
|
||
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> unpack_result(const IValue &result) { | ||
auto dict = result.toGenericDict(); | ||
return {dict.at("keypoints").toTensorVector()[0], // | ||
dict.at("scores").toTensorVector()[0], // | ||
dict.at("descriptors").toTensorVector()[0]}; | ||
} | ||
|
||
torch::Dict<std::string, Tensor> toTensorDict(const torch::IValue &value) { | ||
return c10::impl::toTypedDict<std::string, Tensor>(value.toGenericDict()); | ||
} | ||
|
||
int main(int argc, const char *argv[]) { | ||
if (argc <= 3) { | ||
std::cerr << "Usage:" << std::endl; | ||
std::cerr << argv[0] << " <image0> <image1> <downscaled_width>" << std::endl; | ||
return 1; | ||
} | ||
|
||
torch::manual_seed(1); | ||
torch::autograd::GradMode::set_enabled(false); | ||
|
||
torch::Device device(torch::kCPU); | ||
if (torch::cuda::is_available()) { | ||
std::cout << "CUDA is available! Training on GPU." << std::endl; | ||
device = torch::Device(torch::kCUDA); | ||
} | ||
|
||
int target_width = std::stoi(argv[3]); | ||
Tensor image0 = read_image(std::string(argv[1]), target_width).to(device); | ||
Tensor image1 = read_image(std::string(argv[2]), target_width).to(device); | ||
|
||
// Look for the TorchScript module files in the executable directory | ||
auto executable_dir = fs::weakly_canonical(fs::path(argv[0])).parent_path(); | ||
auto module_path = executable_dir / "SuperPoint.zip"; | ||
if (!fs::exists(module_path)) { | ||
std::cerr << "Could not find the TorchScript module file " << module_path << std::endl; | ||
return 1; | ||
} | ||
torch::jit::script::Module superpoint = torch::jit::load(module_path); | ||
superpoint.eval(); | ||
superpoint.to(device); | ||
|
||
module_path = executable_dir / "SuperGlue.zip"; | ||
if (!fs::exists(module_path)) { | ||
std::cerr << "Could not find the TorchScript module file " << module_path << std::endl; | ||
return 1; | ||
} | ||
torch::jit::script::Module superglue = torch::jit::load(module_path); | ||
superglue.eval(); | ||
superglue.to(device); | ||
|
||
int N = 50; | ||
using namespace std::chrono; | ||
auto t0 = high_resolution_clock::now(); | ||
Tensor keypoints0, scores0, descriptors0; | ||
Tensor keypoints1, scores1, descriptors1; | ||
torch::Dict<std::string, Tensor> pred; | ||
for (int i = 0; i < N; ++i) { | ||
std::tie(keypoints0, scores0, descriptors0) = unpack_result(superpoint.forward({image0})); | ||
std::tie(keypoints1, scores1, descriptors1) = unpack_result(superpoint.forward({image1})); | ||
|
||
torch::Dict<std::string, Tensor> input; | ||
input.insert("image0", image0); | ||
input.insert("image1", image1); | ||
input.insert("keypoints0", keypoints0.unsqueeze(0)); | ||
input.insert("keypoints1", keypoints1.unsqueeze(0)); | ||
input.insert("scores0", scores0.unsqueeze(0)); | ||
input.insert("scores1", scores1.unsqueeze(0)); | ||
input.insert("descriptors0", descriptors0.unsqueeze(0)); | ||
input.insert("descriptors1", descriptors1.unsqueeze(0)); | ||
pred = toTensorDict(superglue.forward({input})); | ||
} | ||
double period = duration_cast<duration<double>>(high_resolution_clock::now() - t0).count() / N; | ||
std::cout << period * 1e3 << " ms, FPS: " << 1 / period << std::endl; | ||
|
||
auto matches = pred.at("matches0")[0]; | ||
auto valid = at::nonzero(matches > -1).squeeze(); | ||
auto mkpts0 = keypoints0.index_select(0, valid); | ||
auto mkpts1 = keypoints1.index_select(0, matches.index_select(0, valid)); | ||
auto confidence = pred.at("matching_scores0")[0].index_select(0, valid); | ||
|
||
std::cout << "Image #0 keypoints: " << keypoints0.size(0) << std::endl; | ||
std::cout << "Image #1 keypoints: " << keypoints1.size(0) << std::endl; | ||
std::cout << "Valid match count: " << valid.size(0) << std::endl; | ||
|
||
cv::Mat plot = | ||
make_matching_plot_fast(image0, image1, keypoints0, keypoints1, mkpts0, mkpts1, confidence); | ||
cv::imwrite("matches.png", plot); | ||
std::cout << "Done! Created matches.png for visualization." << std::endl; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
#pragma once | ||
|
||
#include <torch/torch.h> | ||
|
||
#include <opencv2/core.hpp> | ||
#include <opencv2/highgui.hpp> | ||
#include <opencv2/imgcodecs.hpp> | ||
#include <opencv2/imgproc.hpp> | ||
|
||
#include "io.h" | ||
|
||
cv::Mat draw_keypoints(const torch::Tensor &img, const torch::Tensor &keypoints) { | ||
cv::Mat out = tensor2mat(img); | ||
out.convertTo(out, CV_8U, 255.0f); | ||
cv::cvtColor(out, out, cv::COLOR_GRAY2BGR); | ||
for (int i = 0; i < keypoints.size(0); ++i) { | ||
auto kp = keypoints[i]; | ||
cv::Point p(std::roundl(kp[0].item<float>()), std::roundl(kp[1].item<float>())); | ||
cv::circle(out, p, 2, {0, 0, 255}, -1, cv::LINE_AA); | ||
} | ||
return out; | ||
} | ||
|
||
cv::Mat make_matching_plot_fast(const torch::Tensor &image0, const torch::Tensor &image1, | ||
const torch::Tensor &kpts0, const torch::Tensor &kpts1, | ||
const torch::Tensor &mkpts0, const torch::Tensor &mkpts1, | ||
const torch::Tensor &confidence, bool show_keypoints = true, | ||
int margin = 10) { | ||
cv::Mat imgmat0 = tensor2mat(image0); | ||
imgmat0.convertTo(imgmat0, CV_8U, 255.0f); | ||
cv::Mat imgmat1 = tensor2mat(image1); | ||
imgmat1.convertTo(imgmat1, CV_8U, 255.0f); | ||
|
||
if (show_keypoints) { | ||
const cv::Scalar white(255, 255, 255); | ||
const cv::Scalar black(0, 0, 0); | ||
for (int i = 0; i < kpts0.size(0); ++i) { | ||
auto kp = kpts0[i]; | ||
cv::Point pt(std::lround(kp[0].item<float>()), std::lround(kp[1].item<float>())); | ||
cv::circle(imgmat0, pt, 2, black, -1, cv::LINE_AA); | ||
cv::circle(imgmat0, pt, 1, white, -1, cv::LINE_AA); | ||
} | ||
for (int i = 0; i < kpts1.size(0); ++i) { | ||
auto kp = kpts1[i]; | ||
cv::Point pt(std::lround(kp[0].item<float>()), std::lround(kp[1].item<float>())); | ||
cv::circle(imgmat1, pt, 2, black, -1, cv::LINE_AA); | ||
cv::circle(imgmat1, pt, 1, white, -1, cv::LINE_AA); | ||
} | ||
} | ||
|
||
int H0 = imgmat0.rows, W0 = imgmat0.cols; | ||
int H1 = imgmat1.rows, W1 = imgmat1.cols; | ||
int H = std::max(H0, H1), W = W0 + W1 + margin; | ||
|
||
cv::Mat out = 255 * cv::Mat::ones(H, W, CV_8U); | ||
imgmat0.copyTo(out.rowRange(0, H0).colRange(0, W0)); | ||
imgmat1.copyTo(out.rowRange(0, H1).colRange(W0 + margin, W)); | ||
cv::cvtColor(out, out, cv::COLOR_GRAY2BGR); | ||
|
||
// Apply colormap to confidences | ||
cv::Mat conf_mat = tensor2mat(confidence.unsqueeze(0)); | ||
conf_mat.convertTo(conf_mat, CV_8U, 255.0f); | ||
cv::Mat colors; | ||
cv::applyColorMap(conf_mat, colors, cv::COLORMAP_JET); | ||
|
||
int n = std::min(mkpts0.size(0), mkpts1.size(0)); | ||
for (int i = 0; i < n; ++i) { | ||
auto kp0 = mkpts0[i]; | ||
auto kp1 = mkpts1[i]; | ||
cv::Point pt0(std::lround(kp0[0].item<float>()), std::lround(kp0[1].item<float>())); | ||
cv::Point pt1(std::lround(kp1[0].item<float>()), std::lround(kp1[1].item<float>())); | ||
auto c = colors.at<cv::Vec3b>({i, 0}); | ||
cv::line(out, pt0, {pt1.x + margin + W0, pt1.y}, c, 1, cv::LINE_AA); | ||
// display line end-points as circles | ||
cv::circle(out, pt0, 2, c, -1, cv::LINE_AA); | ||
cv::circle(out, {pt1.x + margin + W0, pt1.y}, 2, c, -1, cv::LINE_AA); | ||
} | ||
|
||
return out; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,9 @@ | ||
from models.superpoint import SuperPoint | ||
from models.superglue import SuperGlue | ||
import torch | ||
|
||
torch.jit.save(SuperPoint({}), 'SuperPoint.zip') | ||
torch.jit.save(SuperGlue({'weights': 'outdoor'}), 'SuperGlue.zip') | ||
from models.superglue import SuperGlue | ||
from models.superpoint import SuperPoint | ||
|
||
superpoint = SuperPoint({}).eval() | ||
superglue = SuperGlue({'weights': 'outdoor'}).eval() | ||
torch.jit.save(superpoint, 'SuperPoint.zip') | ||
torch.jit.save(superglue, 'SuperGlue.zip') |