Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 5 additions & 7 deletions pathpy/path_extraction/temporal_paths.py
Original file line number Diff line number Diff line change
Expand Up @@ -264,13 +264,11 @@ def generate_causal_tree(dag, root, node_map):
queue.append((w, depth+1))
# only consider nodes that have not already
# been added to this level
if not visited[node_map[w], depth+1]:
# add edge to causal tree
y = '{0}_{1}'.format(node_map[w], depth+1)
edges.append((x, y))

visited[node_map[w], depth+1] = True
causal_mapping[y] = node_map[w]
y = '{0}_{1}'.format(node_map[w], depth+1)
if not visited[x, y]:
# add edge to causal tree
edges.append((x, y))
visited[x, y] = True

# Adding all edges at once is more efficient!
causal_tree.add_edges(edges)
Expand Down
71 changes: 71 additions & 0 deletions tests/test_DAG.py
Original file line number Diff line number Diff line change
Expand Up @@ -240,6 +240,77 @@ def test_dag_from_temporal_network():
assert sorted(dag.routes_to_node('a_5')) == sorted([['c_2', 'a_5'], ['a_1', 'b_4', 'a_5']])


def test_generate_causal_tree_diamond():
"""

(b,d,3)-(d,a,5)
/ \
(a,b,1) (a,e,6)
\ /
(b,c,2)-(c,a,4)

---------------------------------> t

(d,2)
/ \
(a,0)-(b,1) (a,3)-(e,4)
\ /
(c,2)

-------------------------------> depth

"""

tn = pp.TemporalNetwork()
tn.add_edge('a', 'b', 1)
tn.add_edge('b', 'c', 2)
tn.add_edge('b', 'd', 3)
tn.add_edge('c', 'a', 4)
tn.add_edge('d', 'a', 5)
tn.add_edge('a', 'e', 6)

delta = 10

dag, node_map = pp.DAG.from_temporal_network(tn, delta)
root = list(dag.roots)[0]

causal_tree, causal_mapping = pp.path_extraction.generate_causal_tree(dag, root, node_map)
assert set(causal_tree.edges.keys()) == set([('a_0', 'b_1'), ('b_1', 'd_2'), ('b_1', 'c_2'), ('d_2', 'a_3'), ('c_2', 'a_3'), ('a_3', 'e_4')])


def test_generate_causal_tree_trapezium():
"""

(b,c,2)-(c,b,3)
/ \
(a,b,1)-----------------(b,c,4)-(c,d,5)

---------------------------------> t

(b,3)-(c,4)-(d,5)
/
(a,0)-(b,1)-(c,2)-(d,3)

-------------------------------> depth

"""

tn = pp.TemporalNetwork()
tn.add_edge('a', 'b', 1)
tn.add_edge('b', 'c', 2)
tn.add_edge('c', 'b', 3)
tn.add_edge('b', 'c', 4)
tn.add_edge('c', 'd', 5)

delta = 10

dag, node_map = pp.DAG.from_temporal_network(tn, delta)
root = list(dag.roots)[0]

causal_tree, causal_mapping = pp.path_extraction.generate_causal_tree(dag, root, node_map)
assert set(causal_tree.edges.keys()) == set([('a_0', 'b_1'), ('b_1', 'c_2'), ('c_2', 'd_3'), ('c_2', 'b_3'), ('b_3', 'c_4'), ('c_4', 'd_5')])


@pytest.mark.networkx
def test_strong_connected_components(random_network):
from pathpy.classes.network import network_to_networkx
Expand Down