Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

src: cpu: aarch64: Re-enable matmul static quantisation through ACL. #2308

Merged
merged 1 commit into from
Jan 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/common/memory_tracking.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -179,6 +179,7 @@ enum {
key_conv_amx_wsp_buffer,
key_conv_bia_reduction,
key_conv_bias_bf16_convert_wsp,
key_conv_bias_s32_convert,
key_conv_cudnn,
key_conv_cudnn_algo,
key_conv_cudnn_filter,
Expand Down
217 changes: 217 additions & 0 deletions src/cpu/aarch64/matmul/acl_lowp_matmul_sq.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
/*******************************************************************************
* Copyright 2025 Arm Ltd. and affiliates
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "cpu/aarch64/matmul/acl_lowp_matmul_sq.hpp"

#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h"
#include "arm_compute/runtime/NEON/functions/NEQuantizationLayer.h"

#include "cpu/aarch64/acl_utils.hpp"

namespace dnnl {
namespace impl {
namespace cpu {
namespace aarch64 {
namespace matmul {
status_t acl_lowp_matmul_sq_resource_t::configure(
const acl_lowp_matmul_sq_conf_t &almc) {
if (!acl_obj_) return status::out_of_memory;
acl_obj_->src_tensor.allocator()->init(almc.src_tensor_info);
acl_obj_->wei_tensor.allocator()->init(almc.wei_tensor_info);
if (almc.with_bias) {
acl_obj_->bia_tensor.allocator()->init(almc.bia_tensor_info);
}
acl_obj_->dst_tensor.allocator()->init(almc.dst_tensor_info);
arm_compute::QuantizationInfo qi {1.0, 0, true};
acl_obj_->src_tensor.info()->set_quantization_info(qi);
acl_obj_->wei_tensor.info()->set_quantization_info(qi);
acl_obj_->dst_tensor.info()->set_quantization_info(qi);
acl_obj_->gemm.configure(&acl_obj_->src_tensor, &acl_obj_->wei_tensor,
almc.with_bias ? &acl_obj_->bia_tensor : nullptr,
&acl_obj_->dst_tensor, almc.gemm_info);
return status::success;
}
status_t acl_lowp_matmul_sq_t::pd_t::init(engine_t *engine) {
VDISPATCH_MATMUL(set_default_formats(), "failed to set default formats");
using smask_t = primitive_attr_t::skip_mask_t;
VDISPATCH_MATMUL(
attr()->has_default_values(smask_t::scales_runtime
| smask_t::zero_points_runtime | smask_t::post_ops),
"only scale, zero point and post-ops attrs supported");
VDISPATCH_MATMUL(attr()->scales_.get(DNNL_ARG_SRC).mask_ == 0
&& attr()->zero_points_.get(DNNL_ARG_SRC) == 0
&& attr()->scales_.get(DNNL_ARG_WEIGHTS).mask_ == 0
&& attr()->zero_points_.get(DNNL_ARG_WEIGHTS) == 0
&& attr()->scales_.get(DNNL_ARG_DST).mask_ == 0
&& attr()->zero_points_.get(DNNL_ARG_DST) == 0,
"common scales and zero points only");
VDISPATCH_MATMUL(
!has_runtime_dims_or_strides(), VERBOSE_RUNTIMEDIM_UNSUPPORTED);
const memory_desc_wrapper src_d(src_md_);
const memory_desc_wrapper wei_d(weights_md_);
const memory_desc_wrapper bia_d(bias_md_);
const memory_desc_wrapper dst_d(dst_md_);
using namespace data_type;
VDISPATCH_MATMUL(utils::one_of(src_d.data_type(), s8, u8)
&& wei_d.data_type() == s8
&& src_d.data_type() == s8
? dst_d.data_type() == s8
: dst_d.data_type() == u8,
VERBOSE_UNSUPPORTED_DT_CFG);
VDISPATCH_MATMUL(utils::one_of(bia_d.data_type(), f32, undef),
VERBOSE_UNSUPPORTED_DT_CFG);
// reject in case the op is running in a Neoverse-N1.
VDISPATCH_MATMUL(arm_compute::CPUInfo::get().has_i8mm(),
"Neoverse-N1 not supported");
VDISPATCH_MATMUL(src_d.matches_tag(format_tag::ab)
&& wei_d.matches_tag(format_tag::ab)
&& dst_d.matches_tag(format_tag::ab),
VERBOSE_UNSUPPORTED_TAG);
VDISPATCH_MATMUL_SC(
memory_desc_init_by_tag(bias_md_, bias_md_.ndims, bias_md_.dims,
bias_md_.data_type, format_tag::ab),
VERBOSE_UNSUPPORTED_BIAS_CFG);
// We set the QuantizationInfo to be dynamic because it is re-set in run()
almc_.src_tensor_info
= arm_compute::TensorInfo(arm_compute::TensorShape(K(), M()), 1,
acl_utils::get_acl_data_t(src_d.data_type(), true),
arm_compute::QuantizationInfo(1.0, 0, true));
almc_.src_tensor_info.set_are_values_constant(false);
almc_.wei_tensor_info
= arm_compute::TensorInfo(arm_compute::TensorShape(N(), K()), 1,
acl_utils::get_acl_data_t(wei_d.data_type(), true),
arm_compute::QuantizationInfo(1.0, 0, true));
almc_.wei_tensor_info.set_are_values_constant(false);
almc_.dst_tensor_info
= arm_compute::TensorInfo(arm_compute::TensorShape(N(), M()), 1,
acl_utils::get_acl_data_t(dst_d.data_type(), true),
arm_compute::QuantizationInfo(1.0, 0, true));
almc_.bia_tensor_info = arm_compute::TensorInfo(
arm_compute::TensorShape(), 1, arm_compute::DataType::S32);
almc_.with_bias = bia_d.format_kind() != format_kind::undef;
if (almc_.with_bias) {
// This is not currently guarded in ACL
VDISPATCH_MATMUL(bia_d.ndims() == 2 && bia_d.dims()[0] == 1
&& bia_d.dims()[1] == N(),
"Only 1xN bias is supported");
almc_.bia_tensor_info.set_tensor_shape(
arm_compute::TensorShape(bia_d.dims()[1], bia_d.dims()[0]));
}
arm_compute::GEMMLowpOutputStageInfo info;
info.type = arm_compute::GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
info.gemmlowp_multiplier = 1073741824;
info.gemmlowp_shift = -1;
info.gemmlowp_offset = 0;
info.gemmlowp_min_bound = -128;
info.gemmlowp_max_bound = 127;
info.output_data_type = almc_.dst_tensor_info.data_type();
almc_.gemm_info.set_gemmlowp_output_stage(info);
auto scratchpad = scratchpad_registry().registrar();
const dnnl::impl::memory_desc_t dst_md_ {desc_.dst_desc};
arm_compute::ActivationLayerInfo act_info;
CHECK(init_scratchpad(engine, scratchpad, acl_post_ops, attr_.post_ops_,
act_info, dst_md_));
almc_.gemm_info.set_activation_info(act_info);
ACL_CHECK_VALID(arm_compute::NEGEMMLowpMatrixMultiplyCore::validate(
&almc_.src_tensor_info, &almc_.wei_tensor_info,
almc_.with_bias ? &almc_.bia_tensor_info : nullptr,
&almc_.dst_tensor_info, almc_.gemm_info));
return status::success;
}
status_t acl_lowp_matmul_sq_t::pd_t::init_scratchpad(engine_t *engine,
memory_tracking::registrar_t &scratchpad, acl_post_ops_t &post_ops,
dnnl::impl::post_ops_t &attr_post_ops,
arm_compute::ActivationLayerInfo &act_info,
const dnnl::impl::memory_desc_t &dst_md) {
CHECK(post_ops.init(engine, attr_post_ops, dst_md, act_info));
// ACL only accepts s32 bias for quantization and since
// the current bias vector is f32 we need to convert.
if (almc_.with_bias) {
const memory_desc_wrapper bias_d(&bias_md_);
scratchpad.book(memory_tracking::names::key_conv_bias_s32_convert,
bias_d.nelems(), bias_d.data_type_size());
}
return status::success;
}
status_t acl_lowp_matmul_sq_t::create_resource(
engine_t *engine, resource_mapper_t &mapper) const {
if (mapper.has_resource(this)) return status::success;
auto r = utils::make_unique<acl_lowp_matmul_sq_resource_t>();
if (!r) return status::out_of_memory;
CHECK(r->configure(pd()->almc_));
mapper.add(this, std::move(r));
return status::success;
}
status_t acl_lowp_matmul_sq_t::execute(const exec_ctx_t &ctx) const {
std::lock_guard<std::mutex> _lock {this->mtx_};
bool with_bias = pd()->almc_.with_bias;
acl_lowp_matmul_sq_obj_t &acl_obj
= ctx.get_resource_mapper()
->get<acl_lowp_matmul_sq_resource_t>(this)
->get_acl_obj();
auto src = CTX_IN_MEM(const int8_t *, DNNL_ARG_SRC);
auto wei = CTX_IN_MEM(const int8_t *, DNNL_ARG_WEIGHTS);
auto dst = CTX_OUT_MEM(const int8_t *, DNNL_ARG_DST);
acl_obj.src_tensor.allocator()->import_memory(const_cast<int8_t *>(src));
acl_obj.wei_tensor.allocator()->import_memory(const_cast<int8_t *>(wei));
acl_obj.dst_tensor.allocator()->import_memory(const_cast<int8_t *>(dst));
DEFINE_ARG_SCALES_BUFFER(src_scale, DNNL_ARG_SRC);
DEFINE_ZERO_POINT_VALUE(src_zero_point, DNNL_ARG_SRC);
DEFINE_ARG_SCALES_BUFFER(wei_scale, DNNL_ARG_WEIGHTS);
DEFINE_ZERO_POINT_VALUE(wei_zero_point, DNNL_ARG_WEIGHTS);
DEFINE_ARG_SCALES_BUFFER(dst_scale, DNNL_ARG_DST);
DEFINE_ZERO_POINT_VALUE(dst_zero_point, DNNL_ARG_DST);
if (with_bias) {
const auto scratchpad = ctx.get_scratchpad_grantor();
auto bia_s32_base = scratchpad.get<uint32_t>(
memory_tracking::names::key_conv_bias_s32_convert);
auto bia_f32_base = CTX_IN_MEM(const float32_t *, DNNL_ARG_BIAS);
const float bias_scale = 1 / (*src_scale * (*wei_scale));
const int num_elements
= acl_obj.bia_tensor.info()->total_size() / sizeof(float32_t);
parallel_nd(num_elements, [&](dim_t e) {
const auto b = int32_t(std::round(bia_f32_base[e] * bias_scale));
bia_s32_base[e] = b;
});
acl_obj.bia_tensor.allocator()->init(*acl_obj.bia_tensor.info());
acl_obj.bia_tensor.allocator()->import_memory(bia_s32_base);
}
acl_obj.src_tensor.info()->set_quantization_info(
arm_compute::QuantizationInfo(*src_scale, -src_zero_point, true));
acl_obj.wei_tensor.info()->set_quantization_info(
arm_compute::QuantizationInfo(*wei_scale, -wei_zero_point, true));
// for efficiency reasons, OneDNN saves the inverse of the destination
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's oneDNN, not OneDNN. Fixup is here.

acl_obj.dst_tensor.info()->set_quantization_info(
arm_compute::QuantizationInfo(
1.0 / (*dst_scale), dst_zero_point, true));
// The two calls below are stateful and, therefore, not fully thread-safe.
// This issue is being addressed, and the lock will be removed when the
// matmul stateless work is finished.
acl_obj.gemm.update_quantization_parameters();
acl_obj.gemm.run();
// free() here tells ACL it can no longer use it, it does not deallocate
acl_obj.src_tensor.allocator()->free();
acl_obj.wei_tensor.allocator()->free();
if (with_bias) { acl_obj.bia_tensor.allocator()->free(); }
acl_obj.dst_tensor.allocator()->free();
return status::success;
};
} // namespace matmul
} // namespace aarch64
} // namespace cpu
} // namespace impl
} // namespace dnnl
103 changes: 103 additions & 0 deletions src/cpu/aarch64/matmul/acl_lowp_matmul_sq.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
/*******************************************************************************
* Copyright 2025 Arm Ltd. and affiliates
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef ACL_LOWP_MATMUL_SQ_HPP
#define ACL_LOWP_MATMUL_SQ_HPP

#include <random>

#include "cpu/cpu_primitive.hpp"
#include "cpu/matmul/cpu_matmul_pd.hpp"
#include "cpu/matmul/matmul_utils.hpp"

#include "cpu/aarch64/acl_post_ops.hpp"

namespace dnnl {
namespace impl {
namespace cpu {
namespace aarch64 {
namespace matmul {

struct acl_lowp_matmul_sq_obj_t {
arm_compute::GEMMLowpOutputStageInfo info;
arm_compute::NEGEMMLowpMatrixMultiplyCore gemm;
arm_compute::Tensor src_tensor;
arm_compute::Tensor wei_tensor;
arm_compute::Tensor bia_tensor;
arm_compute::Tensor dst_tensor;
};

struct acl_lowp_matmul_sq_conf_t {
bool with_bias;
arm_compute::TensorInfo src_tensor_info;
arm_compute::TensorInfo wei_tensor_info;
arm_compute::TensorInfo bia_tensor_info;
arm_compute::TensorInfo dst_tensor_info;
arm_compute::GEMMInfo gemm_info;
};

struct acl_lowp_matmul_sq_resource_t : public resource_t {
acl_lowp_matmul_sq_resource_t()
: acl_obj_(utils::make_unique<acl_lowp_matmul_sq_obj_t>()) {}

status_t configure(const acl_lowp_matmul_sq_conf_t &almc);

acl_lowp_matmul_sq_obj_t &get_acl_obj() const { return *acl_obj_; }

DNNL_DISALLOW_COPY_AND_ASSIGN(acl_lowp_matmul_sq_resource_t);

private:
std::unique_ptr<acl_lowp_matmul_sq_obj_t> acl_obj_;
};

struct acl_lowp_matmul_sq_t : public primitive_t {
struct pd_t : public dnnl::impl::cpu::matmul::cpu_matmul_pd_t {

using cpu_matmul_pd_t::cpu_matmul_pd_t;

DECLARE_COMMON_PD_T("lowp_gemm_sq:acl", acl_lowp_matmul_sq_t,
USE_GLOBAL_SCRATCHPAD);

status_t init(engine_t *engine);

status_t init_scratchpad(engine_t *engine,
memory_tracking::registrar_t &scratchpad,
acl_post_ops_t &post_ops, dnnl::impl::post_ops_t &attr_post_ops,
arm_compute::ActivationLayerInfo &act_info,
const dnnl::impl::memory_desc_t &dst_md);

acl_lowp_matmul_sq_conf_t almc_;
acl_post_ops_t acl_post_ops;
};

acl_lowp_matmul_sq_t(const pd_t *apd) : primitive_t(apd) {}

status_t create_resource(engine_t *engine, resource_mapper_t &mapper) const;

status_t execute(const exec_ctx_t &ctx) const;

private:
mutable std::mutex mtx_;
const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); }
};

} // namespace matmul
} // namespace aarch64
} // namespace cpu
} // namespace impl
} // namespace dnnl

#endif // CPU_AARCH64_ACL_LOWP_MATMUL_HPP
10 changes: 6 additions & 4 deletions src/cpu/matmul/cpu_matmul_list.cpp
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
/*******************************************************************************
* Copyright 2019-2024 Intel Corporation
* Copyright 2024 FUJITSU LIMITED
* Copyright 2021-2024 Arm Ltd. and affiliates
* Copyright 2021-2025 Arm Ltd. and affiliates
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -34,6 +34,7 @@ using namespace dnnl::impl::cpu::x64;
#include "cpu/aarch64/matmul/brgemm_matmul.hpp"
#ifdef DNNL_AARCH64_USE_ACL
#include "cpu/aarch64/matmul/acl_lowp_matmul.hpp"
#include "cpu/aarch64/matmul/acl_lowp_matmul_sq.hpp"
#include "cpu/aarch64/matmul/acl_matmul.hpp"
#endif
using namespace dnnl::impl::cpu::aarch64::matmul;
Expand Down Expand Up @@ -73,10 +74,11 @@ using namespace dnnl::impl::cpu::matmul;
// clang-format off
constexpr impl_list_item_t impl_list[] = REG_MATMUL_P({

CPU_INSTANCE_AARCH64(brgemm_matmul_t<sve_512>)
CPU_INSTANCE_AARCH64(brgemm_matmul_t<sve_512>)
CPU_INSTANCE_AARCH64_ACL(acl_lowp_matmul_sq_t)
CPU_INSTANCE_AARCH64_ACL(acl_lowp_matmul_t)
CPU_INSTANCE_AARCH64_ACL(acl_matmul_t)
CPU_INSTANCE_AARCH64(brgemm_matmul_t<sve_256>)
CPU_INSTANCE_AARCH64_ACL(acl_matmul_t)
CPU_INSTANCE_AARCH64(brgemm_matmul_t<sve_256>)
CPU_INSTANCE_AMX(brgemm_matmul_t<avx512_core_amx_fp16>)
CPU_INSTANCE_AMX(brgemm_matmul_t<avx512_core_amx>)
CPU_INSTANCE_AVX512(brgemm_matmul_t<avx512_core_fp16>)
Expand Down
Loading