You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<p>Assistant Professor of Economics<br>University of Oklahoma</p>
36
36
<p>Research Affiliate<br><ahref="http://legacy.iza.org/en/webcontent/personnel/photos/index_html?key=24155">Institute for the Study of Labor (IZA)</a></p>
<li><ahref="https://tyleransom.github.io/research/JuliaPresentation.pdf">Introduction to Julia for economists</a>: Slides from a short presentation that introduces <ahref="http://julialang.org/">Julia</a>.</li>
59
59
<li><ahref="http://quantecon.org/notebooks.html">QuantEcon's notebook gallery</a>, which includes a few of my notebooks introducing data analysis and optimization in <ahref="http://julialang.org/">Julia</a>.</li>
60
60
<li><ahref="https://github.com/tyleransom/Julia">My Github repository</a>, which introduces basic econometric models in <ahref="http://julialang.org/">Julia</a>.</li>
61
-
<li><ahref="https://github.com/tyleransom/EMalgorithmExample"><tt>EM algorithm example</tt></a>: Code to generate data and estimate simple versions of the EM algorithm for estimation of models with discrete type-specific unobserved heterogeneity.</li>
61
+
<li><ahref="https://github.com/tyleransom/EMalgorithmExample"><code>EM algorithm example</code></a>: Code to generate data and estimate simple versions of the EM algorithm for estimation of models with discrete type-specific unobserved heterogeneity.</li>
<li><ahref="http://www.mathworks.com/matlabcentral/fileexchange/47927-normalmle-m"><tt>normalMLE.m</tt></a>: Estimates normal linear regression with heteroskedastic errors by maximum likelihood.</li>
67
-
<li><ahref="http://www.mathworks.com/matlabcentral/fileexchange/47284-apply-restrictions"><tt>applyRestr.m</tt></a>: Allows for easy parameter restrictions in optimization problems (co-writen with <ahref="http://bschool.pepperdine.edu/about/people/faculty/jared-ashworth/">Jared Ashworth</a>).</li>
68
-
<li><ahref="http://www.mathworks.com/matlabcentral/fileexchange/47389-conditional-logit"><tt>clogit.m</tt></a>: Estimates conditional logit regression by maximum likelihood (co-writen with <ahref="http://bschool.pepperdine.edu/about/people/faculty/jared-ashworth/">Jared Ashworth</a>).</li>
69
-
<li><ahref="https://www.mathworks.com/matlabcentral/fileexchange/68256-ordered-logit"><tt>ologit.m</tt></a>: Estimates the ordered logit model by maximum likelihood.</li>
70
-
<li><ahref="https://www.mathworks.com/matlabcentral/fileexchange/68255-emalgorithmexample"><tt>EM algorithm example</tt></a>: Code to generate data and estimate simple versions of the EM algorithm for estimation of models with discrete type-specific unobserved heterogeneity.</li>
<li><ahref="http://www.mathworks.com/matlabcentral/fileexchange/47927-normalmle-m"><code>normalMLE.m</code></a>: Estimates normal linear regression with heteroskedastic errors by maximum likelihood.</li>
67
+
<li><ahref="http://www.mathworks.com/matlabcentral/fileexchange/47284-apply-restrictions"><code>applyRestr.m</code></a>: Allows for easy parameter restrictions in optimization problems (co-writen with <ahref="http://bschool.pepperdine.edu/about/people/faculty/jared-ashworth/">Jared Ashworth</a>).</li>
68
+
<li><ahref="http://www.mathworks.com/matlabcentral/fileexchange/47389-conditional-logit"><code>clogit.m</code></a>: Estimates conditional logit regression by maximum likelihood (co-writen with <ahref="http://bschool.pepperdine.edu/about/people/faculty/jared-ashworth/">Jared Ashworth</a>).</li>
69
+
<li><ahref="https://www.mathworks.com/matlabcentral/fileexchange/68256-ordered-logit"><code>ologit.m</code></a>: Estimates the ordered logit model by maximum likelihood.</li>
70
+
<li><ahref="https://www.mathworks.com/matlabcentral/fileexchange/68255-emalgorithmexample"><code>EM algorithm example</code></a>: Code to generate data and estimate simple versions of the EM algorithm for estimation of models with discrete type-specific unobserved heterogeneity.</li>
0 commit comments