Multivariate connectivity methods implemented in Python and based on functions and objects available in MNE.
The methods include:
- Maximised imaginary coherence [1]
- Multivariate interaction measure [1]
- Granger causality based on state space models [2 & 3] with optional time-reversal [4]
- The base Anaconda package.
- The MNE and MNE-connectivity packages.
Use the example_pipeline.py script to generate the different multivariate results based on some example data (Data/epochs-epo.fif) using the specified settings (Settings/pipeline_settings.json).
[1] Ewald et al. (2012). NeuroImage. DOI: 10.1016/j.neuroimage.2011.11.084.
[2] Barnett & Seth (2014). Journal of Neuroscience Methods. DOI: 10.1016/j.jneumeth.2013.10.018.
[3] Barnett & Seth (2015). Physical Review E. DOI: 10.1103/PhysRevE.91.040101.
[4] Winkler et al. (2016). IEEE Transactions on Signal Processing. DOI: 10.1109/TSP.2016.2531628.