Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions lean4/src/putnam_1963_a6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -11,14 +11,16 @@ theorem putnam_1963_a6
(E : Set (EuclideanSpace ℝ (Fin 2)))
(hE : E = {H : EuclideanSpace ℝ (Fin 2) | dist F1 H + dist F2 H = r})
(M : EuclideanSpace ℝ (Fin 2))
(hM : M = midpoint ℝ U V)
(hMuv : M = midpoint ℝ U V)
(hr : r > dist F1 F2)
(hUV : U ∈ E ∧ V ∈ E ∧ U ≠ V)
(hAB : A ∈ E ∧ B ∈ E ∧ A ≠ B)
(hCD : C ∈ E ∧ D ∈ E ∧ C ≠ D)
(hAC : A ≠ C)
(hBD : B ≠ D)
(hdistinct : segment ℝ A B ≠ segment ℝ U V ∧ segment ℝ C D ≠ segment ℝ U V ∧ segment ℝ A B ≠ segment ℝ C D)
(hM : M ∈ segment ℝ A B ∧ M ∈ segment ℝ C D)
(hP : Collinear ℝ {P, A, C} ∧ Collinear ℝ {P, U, V})
(hQ : Collinear ℝ {P, B, D} ∧ Collinear ℝ {Q, U, V})
(hQ : Collinear ℝ {Q, B, D} ∧ Collinear ℝ {Q, U, V})
: M = midpoint ℝ P Q :=
sorry
1 change: 1 addition & 0 deletions lean4/src/putnam_1964_b4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ theorem putnam_1964_b4
(hv : ∀ i, C i = Metric.sphere 0 1 ∩ {x : EuclideanSpace ℝ (Fin 3) | ⟪v i, x⟫_ℝ = 0 })
--all the `v_i`'s are non-zero
(hv' : ∀ i, v i ≠ 0)
(hCinj : Function.Injective C)
-- The circles in `C` are in general position
(hT₂ : ∀ᵉ (x ∈ Metric.sphere 0 1) (y ∈ Metric.sphere 0 1),
(Finset.univ.filter (fun i => {x, y} ⊆ (C i))).card ≤ 2)
Expand Down
6 changes: 4 additions & 2 deletions lean4/src/putnam_1977_a2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@ abbrev putnam_1977_a2_solution : ℝ → ℝ → ℝ → ℝ → Prop := sorry
Find all real solutions $(a, b, c, d)$ to the equations $a + b + c = d$, $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{d}$.
-/
theorem putnam_1977_a2 :
∀ a b c d : ℝ, putnam_1977_a2_solution a b c d ↔
a ≠ 0 → b ≠ 0 → c ≠ 0 → d ≠ 0 → (a + b + c = d ∧ 1 / a + 1 / b + 1 / c = 1 / d) :=
∀ a b c d : ℝ,
a ≠ 0 → b ≠ 0 → c ≠ 0 → d ≠ 0 →
(putnam_1977_a2_solution a b c d ↔
(a + b + c = d ∧ 1 / a + 1 / b + 1 / c = 1 / d)) :=
sorry
1 change: 1 addition & 0 deletions lean4/src/putnam_1977_b6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ theorem putnam_1977_b6
{G : Type*}
[Group G]
(H : Subgroup G)
[Finite H]
(h : ℕ)
(h_def : h = Nat.card H)
(a : G)
Expand Down
2 changes: 1 addition & 1 deletion lean4/src/putnam_1980_a4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ import Mathlib
-/
theorem putnam_1980_a4
(abcvals : ℤ → ℤ → ℤ → Prop)
(habcvals : ∀ a b c : ℤ, abcvals a b c ↔ (a = 0 ∧ b = 0 ∧ c = 0) ∧ |a| < 1000000 ∧ |b| < 1000000 ∧ |c| < 1000000) :
(habcvals : ∀ a b c : ℤ, abcvals a b c ↔ ¬(a = 0 ∧ b = 0 ∧ c = 0) ∧ |a| < 1000000 ∧ |b| < 1000000 ∧ |c| < 1000000) :
(∃ a b c : ℤ,
abcvals a b c ∧
|a + b * Real.sqrt 2 + c * Real.sqrt 3| < 10 ^ (-(11 : ℝ))) ∧
Expand Down
2 changes: 1 addition & 1 deletion lean4/src/putnam_1989_b6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ theorem putnam_1989_b6
(X : Set (Fin n → ℝ))
(X_def : ∀ x, x ∈ X ↔ 0 < x 0 ∧ x (-1) < 1 ∧ StrictMono x)
(S : (ℝ → ℝ) → (Fin (n + 2) → ℝ) → ℝ)
(S_def : ∀ f x, S f x = ∑ i : Fin n.succ, (x i.succ - x i.castSucc) * f (i + 1)) :
(S_def : ∀ f x, S f x = ∑ i : Fin n.succ, (x i.succ - x i.castSucc) * f (x i.succ)) :
∃ P : Polynomial ℝ,
P.degree = n ∧
(∀ t ∈ Icc 0 1, P.eval t ∈ Icc 0 1) ∧
Expand Down
2 changes: 1 addition & 1 deletion lean4/src/putnam_1997_a5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,6 @@ Let $N_n$ denote the number of ordered $n$-tuples of positive integers $(a_1,a_2
-/
theorem putnam_1997_a5
(N : (n : ℕ+) → Set (Fin n → ℕ+))
(hN : N = fun (n : ℕ+) => {t : Fin n → ℕ+ | (∀ i j : Fin n, i < j → t i <= t j) ∧ (∑ i : Fin n, (1 : ℝ)/(t i) = 1) })
(hN : N = fun (n : ℕ+) => {t : Fin n → ℕ+ | (∑ i : Fin n, (1 : ℝ)/(t i) = 1) })
: Odd (N 10).ncard ↔ putnam_1997_a5_solution :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_1999_b3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,6 @@ theorem putnam_1999_b3
(A : Set (ℝ × ℝ))
(hA : A = {xy | 0 ≤ xy.1 ∧ xy.1 < 1 ∧ 0 ≤ xy.2 ∧ xy.2 < 1})
(S : ℝ → ℝ → ℝ)
(hS : S = fun x y => ∑' m : ℕ, ∑' n : ℕ, if (m > 0 ∧ n > 0 ∧ 1/2 ≤ m/n ∧ m/n ≤ 2) then x^m * y^n else 0)
(hS : S = fun x y => ∑' m : ℕ, ∑' n : ℕ, if (m > 0 ∧ n > 0 ∧ (1 : ℝ)/2 ≤ (m : ℝ)/n ∧ (m : ℝ)/n ≤ 2) then x^m * y^n else 0)
: Tendsto (fun xy : (ℝ × ℝ) => (1 - xy.1 * xy.2^2) * (1 - xy.1^2 * xy.2) * (S xy.1 xy.2)) (𝓝[A] ⟨1,1⟩) (𝓝 putnam_1999_b3_solution) :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_2003_a5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ theorem putnam_2003_a5
range p ⊆ {-1, 1} ∧ ∑ k, p k = 0 ∧ ∀ j, ∑ k, ite (k ≤ j) (p k) 0 ≥ 0})
(noevenreturn : (m : ℕ) → Set ((Fin (2 * m)) → ℤ))
(hnoevenreturn : noevenreturn = fun m ↦ {p |
¬∃ i j, i < j ∧ p i = 1 ∧ (∀ k ∈ Ioc i j, p i = -1) ∧
¬∃ i j, i < j ∧ p i = 1 ∧ (∀ k ∈ Ioc i j, p k = -1) ∧
Even (j.1 - i.1) ∧ ∑ k, ite (k ≤ j) (p k) 0 = 0})
: ∃ f : ((Fin (2 * n)) → ℤ) → (Fin (2 * (n - 1)) → ℤ),
∀ y ∈ dyckpath (n - 1), ∃! x, x ∈ dyckpath n ∩ noevenreturn n ∧ f x = y :=
Expand Down
2 changes: 1 addition & 1 deletion lean4/src/putnam_2003_a6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -10,5 +10,5 @@ For a set $S$ of nonnegative integers, let $r_S(n)$ denote the number of ordered
theorem putnam_2003_a6
(r : Set ℕ → ℕ → ℕ)
(hr : ∀ S n, r S n = ∑' s1 : S, ∑' s2 : S, if (s1 ≠ s2 ∧ s1 + s2 = n) then 1 else 0)
: (∃ A B : Set ℕ, A ∪ B = ∧ A ∩ B = ∅ ∧ (∀ n : ℕ, r A n = r B n)) ↔ putnam_2003_a6_solution :=
: (∃ A B : Set ℕ, A ∪ B = (Set.univ : Set ℕ) ∧ A ∩ B = ∅ ∧ (∀ n : ℕ, r A n = r B n)) ↔ putnam_2003_a6_solution :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_2003_b5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ Let $A,B$, and $C$ be equidistant points on the circumference of a circle of uni
-/
theorem putnam_2003_b5
(A B C : EuclideanSpace ℝ (Fin 2))
(hABC : dist 0 A = 1 ∧ dist 0 B = 1 ∧ dist 0 C = 1 ∧ dist A B = dist A C ∧ dist A B = dist B C)
(hABC : dist 0 A = 1 ∧ dist 0 B = 1 ∧ dist 0 C = 1 ∧ dist A B = dist A C ∧ dist A B = dist B C ∧ dist A B ≠ 0)
: (∃ f : ℝ → ℝ, ∀ P : EuclideanSpace ℝ (Fin 2), dist 0 P < 1 → ∃ X Y Z : EuclideanSpace ℝ (Fin 2),
dist X Y = dist P A ∧ dist Y Z = dist P B ∧ dist X Z = dist P C ∧
(MeasureTheory.volume (convexHull ℝ {X, Y, Z})).toReal = f (dist 0 P)) :=
Expand Down
2 changes: 1 addition & 1 deletion lean4/src/putnam_2019_a5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,6 @@ theorem putnam_2019_a5
(hq : ∀ k : ℕ, q.coeff k = a k)
(ha0 : a 0 = 0 ∧ ∀ k > p - 1, a k = 0)
(haother : ∀ k : Set.Icc 1 (p - 1), a k = ((k : ℕ) ^ ((p - 1) / 2)) % p)
(hnpoly : ∀ n x, (npoly n).eval x = (x - 1) ^ n) :
(hnpoly : ∀ n : ℕ, npoly n = (Polynomial.X - 1) ^ n) :
IsGreatest {n | npoly n ∣ q} (putnam_2019_a5_solution p) :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_2019_a6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -12,5 +12,5 @@ theorem putnam_2019_a6
(hdiff : ContDiffOn ℝ 1 g (Set.Ioo 0 1) ∧ DifferentiableOn ℝ (deriv g) (Set.Ioo 0 1))
(hr : r > 1)
(hlim : Tendsto (fun x => g x / x ^ r) (𝓝[>] 0) (𝓝 0))
: (Tendsto (deriv g) (𝓝[>] 0) (𝓝 0)) ∨ (Tendsto (fun x : ℝ => sSup {x' ^ r * abs (iteratedDeriv 2 g x') | x' ∈ Set.Ioc 0 x}) (𝓝[>] 0) atTop) :=
: (Tendsto (deriv g) (𝓝[>] 0) (𝓝 0)) ∨ (Tendsto (fun x : ℝ => sSup {((x' ^ r * abs (iteratedDeriv 2 g x') : ℝ) : WithTop ℝ) | x' ∈ Set.Ioc 0 x}) (𝓝[>] 0) atTop) :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_2019_b5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -14,5 +14,5 @@ theorem putnam_2019_b5
(F12 : F 1 = 1 ∧ F 2 = 1)
(Pdeg: Polynomial.degree P = 1008)
(hp: ∀ n : ℕ, (n ≤ 1008) → P.eval (2 * n + 1 : ℝ) = F (2 * n + 1))
: ∀ j k : ℕ, (P.eval 2019 = F j - F k) ↔ ⟨j, k⟩ = putnam_2019_b5_solution :=
: ∀ j k : ℕ, (P.eval 2019 = F j - F k ∧ 1 ≤ j ∧ 1 ≤ k) ↔ ⟨j, k⟩ = putnam_2019_b5_solution :=
sorry
4 changes: 2 additions & 2 deletions lean4/src/putnam_2022_a4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ import Mathlib
open MeasureTheory ProbabilityTheory Classical

abbrev putnam_2022_a4_solution : ℝ := sorry
-- 2*Real.exp (-1/2) - 3
-- 2*Real.exp ((1 : ℝ) / 2) - 3

/--
Suppose $X_1, X_2, ...$ real numbers between 0 and 1 that are chosen independently and uniformly at random. Let $S = \sum_{i=1}^k X_i / 2^i $ where $k$ is the least positive integer such that $X_k < X_{k+1}$ or $k = \infty$ if there is no such integer. Find the expected value of $S$
Expand All @@ -21,7 +21,7 @@ theorem putnam_2022_a4
Otherwise, this is `sSup { (Set.Iic m : Set ℕ) | (m : ℕ) } = Set.univ`
-/
(hk : ∀ ω, k ω = sSup { s : Set ℕ |
∃ m, s = Set.Iic m ∧ ∀ l ∈ s, X l ω < X (l + 1) ω })
∃ m, s = Set.Iic m ∧ ∀ l, l < m → X l ω > X (l + 1) ω })
(S : Ω → ℝ)
(hS : ∀ ω, S ω = ∑' (i : k ω), (X i ω) / (2 ^ (i.val + 1))) :
∫ ω, S ω ∂(ℙ : Measure Ω) = putnam_2022_a4_solution := by
Expand Down