Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
38 commits
Select commit Hold shift + click to select a range
54676f6
feat: copied essential files from ptv3(pointcept). still need to remo…
knzo25 Apr 15, 2025
3aaba6b
feat: added dockerfile and added segmented pointcloud output
knzo25 Apr 17, 2025
c2ee526
feat: implemented export logic. onnx can be generated but will not ge…
knzo25 Apr 21, 2025
f883f1f
feat:
knzo25 Apr 21, 2025
5429304
feat: all changes for deployment implemented
knzo25 May 17, 2025
1a78fe6
chore: removed unused evaluators and unused pointops
knzo25 May 19, 2025
541afb8
chore: removed most of the unused code
knzo25 May 19, 2025
aef8807
chore: added compatibility for torch>=2.6 loading and cleaned export …
knzo25 May 19, 2025
e35414d
chore: updated ptv3's docker
knzo25 May 19, 2025
b08b34c
chore: applied pre-commit
knzo25 May 19, 2025
ca6d486
chore: added license and readme
knzo25 May 19, 2025
8fa52ca
chore: removed unused imports
knzo25 May 19, 2025
faa9490
Merge branch 'main' into feat/ptv3
amadeuszsz Jul 3, 2025
fc953a4
fix(PTv3): update PYTHONPATH
amadeuszsz Sep 10, 2025
ac27913
fix(PTv3): circular import
amadeuszsz Sep 10, 2025
12a509a
feat(PTv3): add scatter
amadeuszsz Sep 10, 2025
0bc20cb
fix(PTv3): correct imports
amadeuszsz Sep 10, 2025
36f7ae4
Merge branch 'main' into feat/ptv3
amadeuszsz Sep 10, 2025
69de8f0
ci(pre-commit): autofix
pre-commit-ci[bot] Sep 10, 2025
66b6ad1
fix(ptv3): final adjustments
amadeuszsz Sep 24, 2025
12860c3
fix(PTv3): correct imports for training & deployment
amadeuszsz Sep 26, 2025
2830827
docs(PTv3): update paths
amadeuszsz Sep 26, 2025
c066e3c
chore(github): update codeowners
amadeuszsz Sep 27, 2025
95f859f
fix(PTv3): prevent NaN loss
amadeuszsz Oct 6, 2025
280e49b
docs(PTv3): remove limitations
amadeuszsz Oct 6, 2025
0bc5329
ci(pre-commit): autofix
pre-commit-ci[bot] Oct 6, 2025
d1d75dc
chore(PTv3): clean-up dependencies
amadeuszsz Oct 6, 2025
e61f931
fix(PTv3): torch warnings
amadeuszsz Oct 6, 2025
d1df42a
fix(PTv3): assertion for batch size > 1
amadeuszsz Oct 6, 2025
6e425aa
fix(PTv3): deprecated function
amadeuszsz Oct 8, 2025
08ea27c
fix(PTv3): wrong arg
amadeuszsz Oct 8, 2025
6d5e819
feat(PTv3): config adjustments
amadeuszsz Oct 8, 2025
55509a8
ci(pre-commit): autofix
pre-commit-ci[bot] Oct 8, 2025
28dc434
feat(PTv3): Dockerfile adjustments
amadeuszsz Oct 8, 2025
d0f1019
feat(PTv3): path adjustments
amadeuszsz Oct 8, 2025
0dd73ca
chore(PTv3): remove unused symlink
amadeuszsz Oct 8, 2025
3133969
chore(PTv3): remove unused scripts
amadeuszsz Oct 8, 2025
834e8b9
Merge branch 'main' into feat/ptv3
amadeuszsz Oct 9, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion .github/CODEOWNERS
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,8 @@
/projects/FRNet/ [email protected]
/projects/GLIP/ [email protected]
/projects/MobileNetv2/ [email protected]
/projects/SparseConvolution/ [email protected]
/projects/PTv3/ [email protected]
/projects/SparseConvolution/ [email protected] [email protected]
/projects/SwinTransformer/ [email protected]
/projects/template/ [email protected]
/projects/TransFusion/ [email protected] [email protected]
Expand Down
18 changes: 18 additions & 0 deletions projects/PTv3/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
ARG AWML_BASE_IMAGE="autoware-ml"
FROM ${AWML_BASE_IMAGE}

ENV FLASH_ATTN_CUDA_ARCHS="120"
ENV PYTHONPATH=/workspace/projects:/workspace/projects/PTv3

RUN python3 -m pip --no-cache-dir install \
addict \
open3d \
flash-attn --no-build-isolation \
regex \
sharedarray \
spconv-cu120 \
tensorboardx \
termcolor \
torch-scatter -f https://data.pyg.org/whl/torch-2.8.0+cu129.html \
tqdm \
yapf==0.40.1
21 changes: 21 additions & 0 deletions projects/PTv3/LICENSE_Pointcept
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2023 Pointcept

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
67 changes: 67 additions & 0 deletions projects/PTv3/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
# Point Transformer V3 (PTv3)

PTv3 is a lidar segmentation model.
AWML's implementation is a port of the [original code](https://github.com/Pointcept/Pointcept), trimming unused parts of the code base, while also adding support for t4dataset and onnx export.

## Summary

- ROS package: [Link](https://github.com/autowarefoundation/autoware_universe/pull/10600)
- Supported datasets
- [x] NuScenes
- [x] T4dataset
- Other supported features
- [x] ONNX export & TensorRT inference

## Results and models

- TODO


## Get started
### 1. Setup

- This project requires a different docker environment that most other projects.

```sh
DOCKER_BUILDKIT=1 docker build -t autoware-ml-ptv3 -f projects/PTv3/Dockerfile . --progress=plain
```

-Run docker

```sh
docker run -it --rm --gpus '"device=0"' --shm-size=64g --name awml -p 6006:6006 -v $PWD/:/workspace -v $PWD/data:/workspace/data autoware-ml-ptv3
```

### 2. Train

To train the model, use the following commands:

```sh
python projects/PTv3/tools/train.py --config-file projects/PTv3/configs/semseg-pt-v3m1-0-t4dataset.py --num-gpus 1
```

To test the model, use the following commands:

```sh
python projects/PTv3/tools/test.py --config-file projects/PTv3/configs/semseg-pt-v3m1-0-t4dataset.py --num-gpus 1 \
--options \
save_path=data/experiment \
weight=work_dirs/ptv3/model/model_best.pth
```

### 3. Deployment

Export the model:

```sh
python projects/PTv3/tools/export.py --config-file projects/PTv3/configs/semseg-pt-v3m1-0-t4dataset.py --num-gpus 1 \
--options \
save_path=data/experiment \
weight=work_dirs/ptv3/model/model_best.pth
```

which will generate a file called `ptv3.onnx`

## Reference

- [Pointcept's PTv3](https://github.com/Pointcept/Pointcept)
39 changes: 39 additions & 0 deletions projects/PTv3/configs/_base_/default_runtime.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
weight = None # path to model weight
resume = False # whether to resume training process
evaluate = True # evaluate after each epoch training process
test_only = False # test process

seed = None # train process will init a random seed and record
save_path = "work_dirs/ptv3"
num_worker = 16 # total worker in all gpu
batch_size = 16 # total batch size in all gpu
batch_size_val = None # auto adapt to bs 1 for each gpu
batch_size_test = None # auto adapt to bs 1 for each gpu
epoch = 100 # total epoch, data loop = epoch // eval_epoch
eval_epoch = 100 # sche total eval & checkpoint epoch
clip_grad = 1.0 # disable with None, enable with a float

sync_bn = False
enable_amp = False
empty_cache = False
empty_cache_per_epoch = False
find_unused_parameters = False

mix_prob = 0
param_dicts = None # example: param_dicts = [dict(keyword="block", lr_scale=0.1)]

# hook
hooks = [
dict(type="CheckpointLoader"),
dict(type="IterationTimer", warmup_iter=2),
dict(type="InformationWriter"),
dict(type="SemSegEvaluator"),
dict(type="CheckpointSaver", save_freq=None),
dict(type="PreciseEvaluator", test_last=False),
]

# Trainer
train = dict(type="DefaultTrainer")

# Tester
test = dict(type="SemSegTester", verbose=True)
215 changes: 215 additions & 0 deletions projects/PTv3/configs/semseg-pt-v3m1-0-base.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,215 @@
_base_ = ["./_base_/default_runtime.py"]

# misc custom setting
batch_size = 4 # bs: total bs in all gpus
mix_prob = 0.8
empty_cache = False
enable_amp = True

# model settings
model = dict(
type="DefaultSegmentorV2",
num_classes=16,
backbone_out_channels=64,
backbone=dict(
type="PT-v3m1",
in_channels=4,
order=["z", "z-trans", "hilbert", "hilbert-trans"],
stride=(2, 2, 2, 2),
enc_depths=(2, 2, 2, 6, 2),
enc_channels=(32, 64, 128, 256, 512),
enc_num_head=(2, 4, 8, 16, 32),
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
dec_depths=(2, 2, 2, 2),
dec_channels=(64, 64, 128, 256),
dec_num_head=(4, 4, 8, 16),
dec_patch_size=(1024, 1024, 1024, 1024),
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
drop_path=0.3,
shuffle_orders=True,
pre_norm=True,
enable_rpe=False,
enable_flash=True,
upcast_attention=False,
upcast_softmax=False,
cls_mode=False,
pdnorm_bn=False,
pdnorm_ln=False,
pdnorm_decouple=True,
pdnorm_adaptive=False,
pdnorm_affine=True,
pdnorm_conditions=("nuScenes", "SemanticKITTI", "Waymo"),
),
criteria=[
dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1),
dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1),
],
)

# scheduler settings
epoch = 50
eval_epoch = 50
optimizer = dict(type="AdamW", lr=0.002, weight_decay=0.005)
scheduler = dict(
type="OneCycleLR",
max_lr=[0.002, 0.0002],
pct_start=0.04,
anneal_strategy="cos",
div_factor=10.0,
final_div_factor=100.0,
)
param_dicts = [dict(keyword="block", lr=0.0002)]

# dataset settings
dataset_type = "NuScenesDataset"
data_root = "data/nuscenes"
ignore_index = -1
names = [
"barrier",
"bicycle",
"bus",
"car",
"construction_vehicle",
"motorcycle",
"pedestrian",
"traffic_cone",
"trailer",
"truck",
"driveable_surface",
"other_flat",
"sidewalk",
"terrain",
"manmade",
"vegetation",
]

data = dict(
num_classes=16,
ignore_index=ignore_index,
names=names,
train=dict(
type=dataset_type,
split="train",
data_root=data_root,
transform=[
# dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis="x", p=0.5),
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis="y", p=0.5),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_grid_coord=True,
),
# dict(type="SphereCrop", point_max=1000000, mode="random"),
# dict(type="CenterShift", apply_z=False),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment"),
feat_keys=("coord", "strength"),
),
],
test_mode=False,
ignore_index=ignore_index,
),
val=dict(
type=dataset_type,
split="val",
data_root=data_root,
transform=[
# dict(type="PointClip", point_cloud_range=(-51.2, -51.2, -4, 51.2, 51.2, 2.4)),
dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_grid_coord=True,
),
# dict(type="SphereCrop", point_max=1000000, mode='center'),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment"),
feat_keys=("coord", "strength"),
),
],
test_mode=False,
ignore_index=ignore_index,
),
test=dict(
type=dataset_type,
split="val",
data_root=data_root,
transform=[
dict(type="Copy", keys_dict={"segment": "origin_segment"}),
dict(
type="GridSample",
grid_size=0.025,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_inverse=True,
),
],
test_mode=True,
test_cfg=dict(
voxelize=dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="test",
return_grid_coord=True,
keys=("coord", "strength"),
),
crop=None,
post_transform=[
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "index"),
feat_keys=("coord", "strength"),
),
],
aug_transform=[
[dict(type="RandomScale", scale=[0.9, 0.9])],
[dict(type="RandomScale", scale=[0.95, 0.95])],
[dict(type="RandomScale", scale=[1, 1])],
[dict(type="RandomScale", scale=[1.05, 1.05])],
[dict(type="RandomScale", scale=[1.1, 1.1])],
[
dict(type="RandomScale", scale=[0.9, 0.9]),
dict(type="RandomFlip", p=1),
],
[
dict(type="RandomScale", scale=[0.95, 0.95]),
dict(type="RandomFlip", p=1),
],
[dict(type="RandomScale", scale=[1, 1]), dict(type="RandomFlip", p=1)],
[
dict(type="RandomScale", scale=[1.05, 1.05]),
dict(type="RandomFlip", p=1),
],
[
dict(type="RandomScale", scale=[1.1, 1.1]),
dict(type="RandomFlip", p=1),
],
],
),
ignore_index=ignore_index,
),
)
Loading