Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Hkv code draft #338

Draft
wants to merge 1 commit into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions tensorflow_recommenders_addons/dynamic_embedding/core/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -97,3 +97,5 @@ custom_op_library(
"kernels/sparse_reshape_op.cu.cc",
],
)

# TODO: Add hkv targets.
Original file line number Diff line number Diff line change
@@ -0,0 +1,311 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/core/framework/common_shape_fns.h"
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_def_builder.h"
#include "tensorflow/core/framework/shape_inference.h"
#include "tensorflow_recommenders_addons/dynamic_embedding/core/utils/utils.h"

namespace tensorflow {

using shape_inference::DimensionHandle;
using shape_inference::InferenceContext;
using shape_inference::ShapeAndType;
using shape_inference::ShapeHandle;

namespace {

Status ScalarAndTwoElementVectorInputsAndScalarOutputs(InferenceContext* c) {
ShapeHandle handle;
DimensionHandle unused_handle;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle));
for (int i = 1; i < c->num_inputs(); ++i) {
TF_RETURN_IF_ERROR(c->WithRank(c->input(i), 1, &handle));
TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_handle));
}
for (int i = 0; i < c->num_outputs(); ++i) {
c->set_output(i, c->Scalar());
}
return Status::OK();
}

} // namespace

Status ValidateTableResourceHandle(InferenceContext* c, ShapeHandle keys,
const string& key_dtype_attr,
const string& value_dtype_attr,
bool is_lookup,
ShapeAndType* output_shape_and_type) {
auto* handle_data = c->input_handle_shapes_and_types(0);
if (handle_data == nullptr || handle_data->size() != 2) {
output_shape_and_type->shape = c->UnknownShape();
output_shape_and_type->dtype = DT_INVALID;
} else {
const ShapeAndType& key_shape_and_type = (*handle_data)[0];
const ShapeAndType& value_shape_and_type = (*handle_data)[1];
DataType key_dtype;
TF_RETURN_IF_ERROR(c->GetAttr(key_dtype_attr, &key_dtype));
if (key_shape_and_type.dtype != key_dtype) {
return errors::InvalidArgument(
"Trying to read value with wrong dtype. "
"Expected ",
DataTypeString(key_shape_and_type.dtype), " got ",
DataTypeString(key_dtype));
}
DataType value_dtype;
TF_RETURN_IF_ERROR(c->GetAttr(value_dtype_attr, &value_dtype));
if (value_shape_and_type.dtype != value_dtype) {
return errors::InvalidArgument(
"Trying to read value with wrong dtype. "
"Expected ",
DataTypeString(value_shape_and_type.dtype), " got ",
DataTypeString(value_dtype));
}
output_shape_and_type->dtype = value_shape_and_type.dtype;

if (is_lookup) {
if (c->RankKnown(key_shape_and_type.shape) && c->RankKnown(keys)) {
int keys_rank = c->Rank(keys);
int key_suffix_rank = c->Rank(key_shape_and_type.shape);
if (keys_rank < key_suffix_rank) {
return errors::InvalidArgument(
"Expected keys to have suffix ",
c->DebugString(key_shape_and_type.shape),
" but saw shape: ", c->DebugString(keys));
}
for (int d = 0; d < key_suffix_rank; d++) {
// Ensure the suffix of keys match what's in the Table.
DimensionHandle dim = c->Dim(key_shape_and_type.shape, d);
TF_RETURN_IF_ERROR(
c->ReplaceDim(keys, keys_rank - key_suffix_rank + d, dim, &keys));
}
std::vector<DimensionHandle> keys_prefix_vec;
keys_prefix_vec.reserve(keys_rank - key_suffix_rank);
for (int d = 0; d < keys_rank - key_suffix_rank; ++d) {
keys_prefix_vec.push_back(c->Dim(keys, d));
}
ShapeHandle keys_prefix = c->MakeShape(keys_prefix_vec);
TF_RETURN_IF_ERROR(c->Concatenate(keys_prefix,
value_shape_and_type.shape,
&output_shape_and_type->shape));
} else {
output_shape_and_type->shape = c->UnknownShape();
}
} else {
TF_RETURN_IF_ERROR(c->Concatenate(keys, value_shape_and_type.shape,
&output_shape_and_type->shape));
}
}
return Status::OK();
}

Status HkvHashTableShape(InferenceContext* c, const ShapeHandle& key,
const ShapeHandle& value) {
c->set_output(0, c->Scalar());

ShapeHandle key_s;
TF_RETURN_IF_ERROR(c->WithRankAtMost(key, 1, &key_s));

DataType key_t;
TF_RETURN_IF_ERROR(c->GetAttr("key_dtype", &key_t));

DataType value_t;
TF_RETURN_IF_ERROR(c->GetAttr("value_dtype", &value_t));

c->set_output_handle_shapes_and_types(
0, std::vector<ShapeAndType>{{key_s, key_t}, {value, value_t}});

return Status::OK();
}

REGISTER_OP("TfraHkvHashTableFind")
.Input("table_handle: resource")
.Input("keys: Tin")
.Input("default_value: Tout")
.Output("values: Tout")
.Attr("Tin: type")
.Attr("Tout: type")
.SetShapeFn([](InferenceContext* c) {
ShapeHandle handle;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle));

ShapeAndType value_shape_and_type;
TF_RETURN_IF_ERROR(ValidateTableResourceHandle(
c,
/*keys=*/c->input(1),
/*key_dtype_attr=*/"Tin",
/*value_dtype_attr=*/"Tout",
/*is_lookup=*/true, &value_shape_and_type));
c->set_output(0, value_shape_and_type.shape);

return Status::OK();
});

REGISTER_OP("TfraHkvHashTableFindWithExists")
.Input("table_handle: resource")
.Input("keys: Tin")
.Input("default_value: Tout")
.Output("values: Tout")
.Output("exists: bool")
.Attr("Tin: type")
.Attr("Tout: type")
.SetShapeFn([](InferenceContext* c) {
ShapeHandle handle;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle));

ShapeHandle keys = c->UnknownShapeOfRank(1);
ShapeAndType value_shape_and_type;
TF_RETURN_IF_ERROR(ValidateTableResourceHandle(
c,
/*keys=*/c->input(1),
/*key_dtype_attr=*/"Tin",
/*value_dtype_attr=*/"Tout",
/*is_lookup=*/true, &value_shape_and_type));
c->set_output(0, value_shape_and_type.shape);
c->set_output(1, keys);

return Status::OK();
});

REGISTER_OP("TfraHkvHashTableInsert")
.Input("table_handle: resource")
.Input("keys: Tin")
.Input("values: Tout")
.Attr("Tin: type")
.Attr("Tout: type")
.SetShapeFn([](InferenceContext* c) {
ShapeHandle handle;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle));

// TODO: Validate keys and values shape.
return Status::OK();
});

REGISTER_OP("TfraHkvHashTableAccum")
.Input("table_handle: resource")
.Input("keys: key_dtype")
.Input("values_or_deltas: value_dtype")
.Input("exists: bool")
.Attr("key_dtype: type")
.Attr("value_dtype: type")
.SetShapeFn([](InferenceContext* c) {
ShapeHandle handle;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle));

// TODO: Validate keys and values shape.
return Status::OK();
});

REGISTER_OP("TfraHkvHashTableRemove")
.Input("table_handle: resource")
.Input("keys: Tin")
.Attr("Tin: type")
.SetShapeFn([](InferenceContext* c) {
ShapeHandle handle;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle));
TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 1, &handle));

// TODO(turboale): Validate keys shape.
return Status::OK();
});

REGISTER_OP("TfraHkvHashTableClear")
.Input("table_handle: resource")
.Attr("key_dtype: type")
.Attr("value_dtype: type");

REGISTER_OP("TfraHkvHashTableSize")
.Input("table_handle: resource")
.Output("size: int64")
.SetShapeFn(ScalarAndTwoElementVectorInputsAndScalarOutputs);

REGISTER_OP("TfraHkvHashTableExport")
.Input("table_handle: resource")
.Output("keys: Tkeys")
.Output("values: Tvalues")
.Attr("Tkeys: type")
.Attr("Tvalues: type")
.SetShapeFn([](InferenceContext* c) {
ShapeHandle handle;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle));
ShapeHandle keys = c->UnknownShapeOfRank(1);
ShapeAndType value_shape_and_type;
TF_RETURN_IF_ERROR(ValidateTableResourceHandle(
c,
/*keys=*/keys,
/*key_dtype_attr=*/"Tkeys",
/*value_dtype_attr=*/"Tvalues",
/*is_lookup=*/false, &value_shape_and_type));
c->set_output(0, keys);
c->set_output(1, value_shape_and_type.shape);
return Status::OK();
});

REGISTER_OP("TfraHkvHashTableSaveToFileSystem")
.Input("table_handle: resource")
.Input("dirpath: string")
.Input("file_name: string")
.Attr("key_dtype: type")
.Attr("value_dtype: type")
.Attr("dirpath_env: string")
.Attr("append_to_file: bool")
.Attr("buffer_size: int >= 1");

REGISTER_OP("TfraHkvHashTableImport")
.Input("table_handle: resource")
.Input("keys: Tin")
.Input("values: Tout")
.Attr("Tin: type")
.Attr("Tout: type")
.SetShapeFn([](InferenceContext* c) {
ShapeHandle handle;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle));

ShapeHandle keys;
TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &keys));
TF_RETURN_IF_ERROR(c->Merge(keys, c->input(2), &keys));
return Status::OK();
});

REGISTER_OP("TfraHkvHashTableLoadFromFileSystem")
.Input("table_handle: resource")
.Input("dirpath: string")
.Input("file_name: string")
.Attr("key_dtype: type")
.Attr("value_dtype: type")
.Attr("dirpath_env: string")
.Attr("load_entire_dir: bool")
.Attr("buffer_size: int >= 1");

REGISTER_OP("TfraHkvHashTableOfTensors")
.Output("table_handle: resource")
.Attr("container: string = ''")
.Attr("shared_name: string = ''")
.Attr("use_node_name_sharing: bool = false")
.Attr("key_dtype: type")
.Attr("value_dtype: type")
.Attr("value_shape: shape = {}")
.Attr("init_capacity: int = 0")
.Attr("max_capacity: int = 0")
.SetIsStateful()
.SetShapeFn([](InferenceContext* c) {
PartialTensorShape value_p;
TF_RETURN_IF_ERROR(c->GetAttr("value_shape", &value_p));
ShapeHandle value_s;
TF_RETURN_IF_ERROR(c->MakeShapeFromPartialTensorShape(value_p, &value_s));
return HkvHashTableShape(c, /*key=*/c->Scalar(), /*value=*/value_s);
});
} // namespace tensorflow
Loading