-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Add] target SL for few-shot difficulty measure
- Loading branch information
Showing
2 changed files
with
232 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,216 @@ | ||
import json | ||
import os | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import torch | ||
import torch.optim | ||
from tqdm import tqdm | ||
|
||
from backbone import get_backbone_class | ||
from datasets.dataloader import get_dataloader, get_unlabeled_dataloader | ||
from io_utils import parse_args | ||
from model import get_model_class | ||
from paths import get_output_directory, get_final_pretrain_state_path, get_pretrain_state_path, \ | ||
get_pretrain_params_path, get_pretrain_history_path | ||
|
||
|
||
def _get_dataloaders(params): | ||
batch_size = params.batch_size | ||
labeled_source_bs = batch_size | ||
unlabeled_source_bs = batch_size | ||
unlabeled_target_bs = batch_size | ||
|
||
if params.us and params.ut: | ||
unlabeled_source_bs //= 2 | ||
unlabeled_target_bs //= 2 | ||
|
||
ls, us, ut = None, None, None | ||
if params.ls: | ||
print('Using source data {} (labeled)'.format(params.source_dataset)) | ||
ls = get_unlabeled_dataloader(dataset_name=params.source_dataset, augmentation=params.augmentation, | ||
batch_size=labeled_source_bs, siamese=False, unlabeled_ratio=params.unlabeled_ratio, | ||
num_workers=params.num_workers, split_seed=params.split_seed) | ||
|
||
if params.us: | ||
raise NotImplementedError | ||
print('Using source data {} (unlabeled)'.format(params.source_dataset)) | ||
us = get_dataloader(dataset_name=params.source_dataset, augmentation=params.augmentation, | ||
batch_size=unlabeled_source_bs, num_workers=params.num_workers, | ||
siamese=True) # important | ||
|
||
if params.ut: | ||
print('Using target data {} (unlabeled)'.format(params.target_dataset)) | ||
ut = get_unlabeled_dataloader(dataset_name=params.target_dataset, augmentation=params.augmentation, | ||
batch_size=unlabeled_target_bs, num_workers=params.num_workers, siamese=True, | ||
unlabeled_ratio=params.unlabeled_ratio) | ||
|
||
return ls, us, ut | ||
|
||
|
||
def main(params): | ||
backbone = get_backbone_class(params.backbone)() | ||
model = get_model_class(params.model)(backbone, params) | ||
output_dir = get_output_directory(params) | ||
labeled_source_loader, unlabeled_source_loader, unlabeled_target_loader = _get_dataloaders(params) | ||
|
||
params_path = get_pretrain_params_path(output_dir) | ||
with open(params_path, 'w') as f: | ||
json.dump(vars(params), f, indent=4) | ||
pretrain_history_path = get_pretrain_history_path(output_dir) | ||
print('Saving pretrain params to {}'.format(params_path)) | ||
print('Saving pretrain history to {}'.format(pretrain_history_path)) | ||
|
||
if params.pls: | ||
# Load previous pre-trained weights for second-step pre-training | ||
previous_base_output_dir = get_output_directory(params, pls_previous=True) | ||
state_path = get_final_pretrain_state_path(previous_base_output_dir) | ||
print('Loading previous state for second-step pre-training:') | ||
print(state_path) | ||
|
||
# Note, override model.load_state_dict to change this behavior. | ||
state = torch.load(state_path) | ||
missing, unexpected = model.load_state_dict(state, strict=False) | ||
if len(unexpected): | ||
raise Exception("Unexpected keys from previous state: {}".format(unexpected)) | ||
|
||
model.train() | ||
model.cuda() | ||
|
||
if params.optimizer == 'sgd': | ||
optimizer = torch.optim.SGD(model.parameters(), | ||
lr=params.lr, momentum=0.9, | ||
weight_decay=1e-4, | ||
nesterov=False) | ||
elif params.optimizer == 'adam': | ||
optimizer = torch.optim.Adam(model.parameters(), lr=params.lr) | ||
else: | ||
raise ValueError('Invalid value for params.optimizer: {}'.format(params.optimizer)) | ||
|
||
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, | ||
milestones=[400, 600, 800], | ||
gamma=0.1) | ||
|
||
pretrain_history = { | ||
'loss': [0] * params.epochs, | ||
'source_loss': [0] * params.epochs, | ||
'target_loss': [0] * params.epochs, | ||
} | ||
|
||
for epoch in range(params.epochs): | ||
print('EPOCH {}'.format(epoch).center(40).center(80, '#')) | ||
|
||
epoch_loss = 0 | ||
epoch_source_loss = 0 | ||
epoch_target_loss = 0 | ||
steps = 0 | ||
|
||
if epoch == 0: | ||
state_path = get_pretrain_state_path(output_dir, epoch=0) | ||
print('Saving pre-train state to:') | ||
print(state_path) | ||
torch.save(model.state_dict(), state_path) | ||
|
||
model.on_epoch_start() | ||
model.train() | ||
|
||
if params.ls and not params.us and not params.ut: # only ls (type 1) | ||
for x, y in tqdm(labeled_source_loader): | ||
model.on_step_start() | ||
optimizer.zero_grad() | ||
loss, _ = model.compute_cls_loss_and_accuracy(x.cuda(), y.cuda()) | ||
loss.backward() | ||
optimizer.step() | ||
model.on_step_end() | ||
|
||
epoch_loss += loss.item() | ||
epoch_source_loss += loss.item() | ||
steps += 1 | ||
elif not params.ls and params.us and not params.ut: # only us (type 2) | ||
for x, _ in tqdm(unlabeled_source_loader): | ||
model.on_step_start() | ||
optimizer.zero_grad() | ||
loss = model.compute_ssl_loss(x[0].cuda(), x[1].cuda()) | ||
loss.backward() | ||
optimizer.step() | ||
model.on_step_end() | ||
|
||
epoch_loss += loss.item() | ||
epoch_source_loss += loss.item() | ||
steps += 1 | ||
elif params.ut: # ut (epoch is based on unlabeled target) | ||
for x, _ in tqdm(unlabeled_target_loader): | ||
model.on_step_start() | ||
optimizer.zero_grad() | ||
target_loss = model.compute_ssl_loss(x[0].cuda(), x[1].cuda()) # UT loss | ||
epoch_target_loss += target_loss.item() | ||
source_loss = None | ||
if params.ls: # type 4, 7 | ||
try: | ||
sx, sy = labeled_source_loader_iter.next() | ||
except (StopIteration, NameError): | ||
labeled_source_loader_iter = iter(labeled_source_loader) | ||
sx, sy = labeled_source_loader_iter.next() | ||
source_loss = model.compute_cls_loss_and_accuracy(sx.cuda(), sy.cuda())[0] # LS loss | ||
epoch_source_loss += source_loss.item() | ||
if params.us: # type 5, 8 | ||
try: | ||
sx, sy = unlabeled_source_loader_iter.next() | ||
except (StopIteration, NameError): | ||
unlabeled_source_loader_iter = iter(unlabeled_source_loader) | ||
sx, sy = unlabeled_source_loader_iter.next() | ||
source_loss = model.compute_ssl_loss(sx[0].cuda(), sx[1].cuda()) # US loss | ||
epoch_source_loss += source_loss.item() | ||
|
||
if source_loss: | ||
loss = source_loss * (1 - params.gamma) + target_loss * params.gamma | ||
else: | ||
loss = target_loss | ||
loss.backward() | ||
optimizer.step() | ||
model.on_step_end() | ||
|
||
epoch_loss += loss.item() | ||
steps += 1 | ||
else: | ||
raise AssertionError('Unknown training combination.') | ||
|
||
if scheduler is not None: | ||
scheduler.step() | ||
model.on_epoch_end() | ||
|
||
mean_loss = epoch_loss / steps | ||
mean_source_loss = epoch_source_loss / steps | ||
mean_target_loss = epoch_target_loss / steps | ||
fmt = 'Epoch {:04d}: loss={:6.4f} source_loss={:6.4f} target_loss={:6.4f}' | ||
print(fmt.format(epoch, mean_loss, mean_source_loss, mean_target_loss)) | ||
|
||
pretrain_history['loss'][epoch] = mean_loss | ||
pretrain_history['source_loss'][epoch] = mean_source_loss | ||
pretrain_history['target_loss'][epoch] = mean_target_loss | ||
|
||
pd.DataFrame(pretrain_history).to_csv(pretrain_history_path) | ||
|
||
epoch += 1 | ||
if epoch % params.model_save_interval == 0 or epoch == params.epochs: | ||
state_path = get_pretrain_state_path(output_dir, epoch=epoch) | ||
print('Saving pre-train state to:') | ||
print(state_path) | ||
torch.save(model.state_dict(), state_path) | ||
|
||
|
||
if __name__ == '__main__': | ||
np.random.seed(10) | ||
params = parse_args('pretrain') | ||
|
||
targets = params.target_dataset | ||
if targets is None: | ||
targets = [targets] | ||
elif len(targets) > 1: | ||
print('#' * 80) | ||
print("Running pretrain iteratively for multiple target datasets: {}".format(targets)) | ||
print('#' * 80) | ||
|
||
for target in targets: | ||
params.target_dataset = target | ||
main(params) |