Highlights
- Pro
-
-
-
XDA Public
Official code for our paper "Taming Prompt-based Data Augmentation for Extreme Multi-Label Text Classification”.
-
LSFA Public
The code for our paper "Label-Specific Feature Augmentation for Long-Tailed Multi-Label Text Classification”
-
TGTR Public
The code for our paper " Textual Tag Recommendation with Multi-tag Topical Attention”
Python UpdatedFeb 10, 2023 -
-
Air-Quality-Prediction Public
2021年研究生数学建模竞赛B题,全国二等奖,空气质量预报二次建模,时间序列数据分析与回归预测。Time Series Prediction&Air Quality Prediction.
-
CVPR-2020-LEAP Public
Unofficial implement of LEAP(Deep Representation Learning on Long-tailed Data: A Learnable Embedding Augmentation Perspective) for Multi-Label Classification.
-
Comment-Sentiment-Analysis Public
使用基于情感词典的情感分析方法对评论信息进行情感分析。The Sentiment Analysis Method based on Sentiment Dictionary is used for Comment Information.
-
使用中文情感词汇本体库进行情感分析,之后对每种情感的文本进行主题分析。Using Chinese Sentiment Dictionary for Sensitive Analysis, Then applying LDA Topic Analysis for each Emotion.
-
使用LDA模型进行中文文本的主题生成。Using LDA Model for Chinese Topic Generation.
-
使用TF-IDF算法进行中文关键词生成任务。Using TF-IDF Algorithm to Generate Chinese Keywords.
-
针对一维时间序列数据,采用GMM和K-Means算法进行异常点检测。For one-dimensional time series data, GMM and K-means algorithm are used to detect outliers.
-
NCF-for-Implicit-Feedback Public
Neural collaborative filtering (NCF) method is used for Microsoft MIND news recommendation dataset.
-
ARIMA-Plot-of-Residuals Public
使用AIC准则进行参数选择,之后采用ARIMA模型进行时间序列预测,最后给出残差图。The AIC criterion is used to select the parameters, and then ARIMA model is used to predict the time series. Finally, the residual diagram is given.
-
MF-for-Movie-Recommendation Public
使用矩阵分解方法进行电影推荐的评分预测。The matrix factorization method is used to predict the rating of movie recommendation.
-
NCF-MF-for-Recommendation Public
分别使用传统方法(KNN,SVD,NMF等)和深度方法(NCF)进行推荐系统的评分预测。Traditional methods (KNN, SVD, NMF, etc.) and depth method (NCF) were used to predict rating of the recommendation system.
-
LDA-gensim Public
使用LDA模型提取n个句子的主题,并统计每个主题出现的频次。LDA model is used to extract the topic of N sentences, and the frequency of each topic is counted.
-
通过十折交叉验证进行参数选择,最后利用最优参数进行随机森林回归预测。Through ten fold cross validation, the parameters were selected, and finally the optimal parameters were used for random forest regression prediction.
-
Multi-LSTM-for-Regression Public
使用LSTM处理回归问题,每个输入特征的时间窗维度不一样,因此,也可以看作利用了多个LSTM特征提取器。When LSTM is used to deal with regression problems, the time window dimension of each input feature is different. Therefore, it can also be regar…
-
在Yelp数据集上摘取部分评分数据进行多种推荐算法(SVD,SVDPP,PMF,NMF)的性能对比。Some rating data are extracted from yelp dataset to compare the performance of various recommendation algorithms(SVD,SVDPP,PMF,NMF).
-
sklearn-regression-algorithm Public
常见sklearn回归算法(随机森林,adaboost,bagging,knn等)在示例数据集上的使用。The application of common sklearn regression algorithms (random forest, AdaBoost, bagging, KNN, etc.) on the sample dataset.
-
对于多标签分类数据集的预处理。Data preprocessing for multi label classification.
-
P300-BCI-Data-Analysis Public
2020年研究生数学建模竞赛C题,全国二等奖,分析脑机接口数据进行分析预测。The data of BCI were analyzed and predicted.
-
Credit-Data-Analysis Public
实现对信贷数据的数据预处理,数据分析。之后利用多种分类算法对公司是否违约进行预测。Realize the data preprocessing and data analysis of credit data. Then, it uses a variety of classification algorithms to predict whether the company defaults.
-
Random-Forest-Regression Public
使用随机森林算法对企业评级进行预测。The random forest algorithm is used to predict the enterprise rating.
-
-
在聚宽(joinquant)平台上使用多因子策略进行量化投资模拟。
-
使用矩阵分解算法处理隐式反馈数据,并进行Top-N推荐。The matrix factorization algorithm is used to process the implicit feedback data and make top-N recommendation.
2 UpdatedAug 7, 2020 -