-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
180 additions
and
7 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
import os | ||
import sys | ||
|
||
sys.path.append(os.path.join(os.path.dirname(__file__), "..")) | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import seaborn as sns | ||
from sklearn.linear_model import LinearRegression | ||
from sklearn.linear_model import RANSACRegressor | ||
from sklearn.tree import DecisionTreeRegressor | ||
from sklearn.linear_model import HuberRegressor | ||
from sklearn.linear_model import TheilSenRegressor | ||
from sklearn.metrics import mean_absolute_error as mae | ||
from scipy.stats import norm | ||
from scipy.stats import wasserstein_distance | ||
import tqdm | ||
from shift28m.datasets import SumPricesRegression | ||
|
||
|
||
sns.set_style("whitegrid") | ||
|
||
|
||
dataset = SumPricesRegression() | ||
|
||
n_trials = 20 | ||
train_sample_size = 100000 | ||
test_sample_size = 100000 | ||
test_mu = 80 | ||
test_sigma = 10 | ||
|
||
n_trials = 20 | ||
train_sample_size = 100000 | ||
test_sample_size = 100000 | ||
test_mu = 180000 | ||
test_sigma = 10000 | ||
|
||
shifts = [ | ||
{"train_mu": 180000, "train_sigma": 100000}, | ||
{"train_mu": 160000, "train_sigma": 100000}, | ||
{"train_mu": 140000, "train_sigma": 100000}, | ||
{"train_mu": 120000, "train_sigma": 100000}, | ||
{"train_mu": 100000, "train_sigma": 100000}, | ||
{"train_mu": 80000, "train_sigma": 100000}, | ||
{"train_mu": 60000, "train_sigma": 100000}, | ||
{"train_mu": 40000, "train_sigma": 100000}, | ||
{"train_mu": 20000, "train_sigma": 100000}, | ||
] | ||
|
||
models = [ | ||
{"model": LinearRegression, "sample_weights": "ERM"}, | ||
{"model": LinearRegression, "sample_weights": "IWERM (optimal)"}, | ||
{ | ||
"model": LinearRegression, | ||
"sample_weights": r"RIWERM ($\alpha=0.25$)", | ||
"alpha": 0.25, | ||
}, | ||
{ | ||
"model": LinearRegression, | ||
"sample_weights": r"RIWERM ($\alpha=0.5$)", | ||
"alpha": 0.5, | ||
}, | ||
{ | ||
"model": LinearRegression, | ||
"sample_weights": r"RIWERM ($\alpha=0.75$)", | ||
"alpha": 0.75, | ||
}, | ||
] | ||
|
||
models_errors_mean = [] | ||
models_errors_std = [] | ||
dists = [] | ||
|
||
for k in range(len(models)): | ||
model = models[k]["model"] | ||
weighting = models[k]["sample_weights"] | ||
|
||
model_errors_mean = [] | ||
model_errors_std = [] | ||
model_dists = [] | ||
for shift in shifts: | ||
errors = [] | ||
|
||
rv_train = np.random.normal(shift["train_mu"], shift["train_sigma"], 10000) | ||
rv_test = np.random.normal(test_mu, test_sigma, 10000) | ||
wd = wasserstein_distance(rv_train, rv_test) | ||
model_dists.append(wd) | ||
|
||
for i in tqdm.tqdm(range(n_trials)): | ||
(x_train, y_train), (x_test, y_test) = dataset.load_dataset( | ||
target_shift=True, | ||
train_size=train_sample_size, | ||
test_size=test_sample_size, | ||
test_mu=test_mu, | ||
test_sigma=test_sigma, | ||
train_mu=shift["train_mu"], | ||
train_sigma=shift["train_sigma"], | ||
random_seed=i, | ||
) | ||
|
||
x_train = x_train.reshape(-1, 1) | ||
x_test = x_test.reshape(-1, 1) | ||
|
||
p_tr = norm.pdf(y_train, loc=shift["train_mu"], scale=shift["train_sigma"]) | ||
p_te = norm.pdf(y_train, loc=test_mu, scale=test_sigma) | ||
|
||
p_tr = p_tr.reshape(-1) | ||
p_te = p_te.reshape(-1) | ||
|
||
reg = model() | ||
if weighting == "ERM": | ||
reg.fit(x_train, y_train) | ||
elif weighting.split()[0] == "IWERM": | ||
reg.fit(x_train, y_train, sample_weight=p_te / (p_tr + 1e-9)) | ||
elif weighting.split()[0] == "AIWERM": | ||
alpha = float(models[k]["alpha"]) | ||
w = (p_te / (p_tr + 1e-9)) ** alpha | ||
reg.fit(x_train, y_train, sample_weight=w) | ||
elif weighting.split()[0] == "RIWERM": | ||
alpha = float(models[k]["alpha"]) | ||
w = p_te / ((1 - alpha) * p_te + alpha * p_tr + 1e-9) | ||
reg.fit(x_train, y_train, sample_weight=w) | ||
|
||
errors.append(mae(reg.predict(x_test), y_test)) | ||
|
||
model_errors_mean.append(np.mean(errors)) | ||
model_errors_std.append(np.std(errors)) | ||
print(model_errors_mean) | ||
print(model_errors_std) | ||
models_errors_mean.append(model_errors_mean) | ||
models_errors_std.append(model_errors_std) | ||
dists.append(model_dists) | ||
|
||
models_errors_mean = np.array(models_errors_mean) | ||
models_errors_std = np.array(models_errors_std) | ||
|
||
colors = ["purple", "green", "blue", "darkcyan", "red"] | ||
|
||
print(dists) | ||
print(models_errors_mean) | ||
print(models_errors_std) | ||
|
||
fig = plt.figure(figsize=(12, 6)) | ||
for i in range(len(models)): | ||
plt.plot( | ||
dists[i], | ||
models_errors_mean[i], | ||
alpha=0.8, | ||
color=colors[i], | ||
label=models[i]["sample_weights"], | ||
) | ||
plt.fill_between( | ||
dists[i], | ||
models_errors_mean[i], | ||
models_errors_mean[i] + models_errors_std[i], | ||
alpha=0.2, | ||
color=colors[i], | ||
) | ||
plt.fill_between( | ||
dists[i], | ||
models_errors_mean[i], | ||
models_errors_mean[i] - models_errors_std[i], | ||
alpha=0.2, | ||
color=colors[i], | ||
) | ||
|
||
plt.legend() | ||
plt.xlabel(r"$W_1(P_{train}, P_{test})$") | ||
plt.ylabel("MAE") | ||
plt.savefig("sumprices_regression_iwerm_target_shift.png") | ||
plt.show() |