-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
Fixes #425
- Loading branch information
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
#' Calculate Akaike Information Criterion (AIC) for Cauchy Distribution | ||
#' | ||
#' This function calculates the Akaike Information Criterion (AIC) for a Cauchy | ||
#' distribution fitted to the provided data. | ||
#' | ||
#' @family Utility | ||
#' @author Steven P. Sanderson II, MPH | ||
#' | ||
#' @description | ||
#' This function estimates the parameters of a Cauchy distribution from the | ||
#' provided data using maximum likelihood estimation, and then calculates the | ||
#' AIC value based on the fitted distribution. | ||
#' | ||
#' @param .x A numeric vector containing the data to be fitted to a Cauchy | ||
#' distribution. | ||
#' | ||
#' @details | ||
#' This function fits a Cauchy distribution to the provided data using maximum | ||
#' likelihood estimation. It first estimates the initial parameters of the | ||
#' Cauchy distribution using the method of moments. Then, it optimizes the | ||
#' negative log-likelihood function using the provided data and the initial | ||
#' parameter estimates. Finally, it calculates the AIC value based on the | ||
#' fitted distribution. | ||
#' | ||
#' Initial parameter estimates: The function uses the method of moments estimates | ||
#' for the initial location and scale parameters of the Cauchy distribution. | ||
#' | ||
#' Optimization method: The function uses the optim function for optimization. | ||
#' You might explore different optimization methods within optim for potentially | ||
#' better performance. | ||
#' | ||
#' Goodness-of-fit: While AIC is a useful metric for model comparison, it's | ||
#' recommended to also assess the goodness-of-fit of the chosen model using | ||
#' visualization and other statistical tests. | ||
#' | ||
#' @examples | ||
#' # Example 1: Calculate AIC for a sample dataset | ||
#' set.seed(123) | ||
#' x <- rcauchy(30) | ||
#' util_cauchy_aic(x) | ||
#' | ||
#' @return | ||
#' The AIC value calculated based on the fitted Cauchy distribution to the | ||
#' provided data. | ||
#' | ||
#' @name util_cauchy_aic | ||
NULL | ||
|
||
#' @export | ||
#' @rdname util_cauchy_aic | ||
util_cauchy_aic <- function(.x) { | ||
# Tidyeval | ||
x <- as.numeric(.x) | ||
|
||
# Negative log-likelihood function for Cauchy distribution | ||
neg_log_lik_cauchy <- function(par, data) { | ||
location <- par[1] | ||
scale <- par[2] | ||
n <- length(data) | ||
-sum(dcauchy(data, location = location, scale = scale, log = TRUE)) | ||
} | ||
|
||
# Get initial parameter estimates (you might need to adjust this depending on your data) | ||
# Here we use method of moments estimates as a starting point | ||
pe <- TidyDensity::util_cauchy_param_estimate(x)$parameter_tbl | ||
|
||
# Fit Cauchy distribution using optim | ||
fit_cauchy <- optim( | ||
c(pe$location, pe$scale), | ||
neg_log_lik_cauchy, | ||
data = x | ||
) | ||
|
||
# Extract log-likelihood and number of parameters | ||
logLik_cauchy <- -fit_cauchy$value | ||
k_cauchy <- 2 # Number of parameters for Cauchy distribution (location and scale) | ||
|
||
# Calculate AIC | ||
AIC_cauchy <- 2 * k_cauchy - 2 * logLik_cauchy | ||
|
||
# Return AIC | ||
return(AIC_cauchy) | ||
} |
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.