-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #497 from spsanderson/development
Fixes #477
- Loading branch information
Showing
179 changed files
with
1,423 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
#' Estimate Inverse Weibull Parameters | ||
#' | ||
#' @family Parameter Estimation | ||
#' @family Inverse Weibull | ||
#' | ||
#' @author Steven P. Sanderson II, MPH | ||
#' | ||
#' @details This function will attempt to estimate the inverse Weibull shape and rate | ||
#' parameters given some vector of values. | ||
#' | ||
#' @description The function will return a list output by default, and if the parameter | ||
#' `.auto_gen_empirical` is set to `TRUE` then the empirical data given to the | ||
#' parameter `.x` will be run through the `tidy_empirical()` function and combined | ||
#' with the estimated inverse Weibull data. | ||
#' | ||
#' @param .x The vector of data to be passed to the function. | ||
#' @param .auto_gen_empirical This is a boolean value of TRUE/FALSE with default | ||
#' set to TRUE. This will automatically create the `tidy_empirical()` output | ||
#' for the `.x` parameter and use the `tidy_combine_distributions()`. The user | ||
#' can then plot out the data using `$combined_data_tbl` from the function output. | ||
#' | ||
#' @examples | ||
#' library(dplyr) | ||
#' library(ggplot2) | ||
#' | ||
#' set.seed(123) | ||
#' x <- tidy_inverse_weibull(100, .shape = 2, .scale = 1)[["y"]] | ||
#' output <- util_inverse_weibull_param_estimate(x) | ||
#' | ||
#' output$parameter_tbl | ||
#' | ||
#' output$combined_data_tbl %>% | ||
#' tidy_combined_autoplot() | ||
#' | ||
#' @return | ||
#' A tibble/list | ||
#' | ||
#' @name util_inverse_weibull_param_estimate | ||
NULL | ||
#' @export | ||
#' @rdname util_inverse_weibull_param_estimate | ||
|
||
util_inverse_weibull_param_estimate <- function(.x, .auto_gen_empirical = TRUE) { | ||
|
||
# Tidyeval ---- | ||
x_term <- as.numeric(.x) | ||
minx <- min(x_term) | ||
maxx <- max(x_term) | ||
n <- length(x_term) | ||
unique_terms <- length(unique(x_term)) | ||
|
||
# Checks ---- | ||
if (!is.numeric(.x)) { | ||
rlang::abort( | ||
message = "The '.x' parameter must be a numeric vector.", | ||
use_cli_format = TRUE | ||
) | ||
} | ||
|
||
# Negative log-likelihood function ---- | ||
neg_log_lik <- function(params, data) { | ||
shape <- params[1] | ||
scale <- params[2] | ||
-sum(actuar::dinvweibull(data, shape = shape, scale = scale, log = TRUE)) | ||
} | ||
|
||
# Initial parameter guesses | ||
initial_params <- c(shape = 1, scale = 1) | ||
|
||
# Optimize to minimize the negative log-likelihood | ||
opt_result <- optim( | ||
par = initial_params, | ||
fn = neg_log_lik, | ||
data = x_term, | ||
method = "L-BFGS-B", | ||
lower = c(1e-5, 1e-5) | ||
) | ||
|
||
iw_shape <- opt_result$par[1] | ||
iw_scale <- opt_result$par[2] | ||
iw_rate <- 1 / iw_scale | ||
|
||
# Return Tibble ---- | ||
if (.auto_gen_empirical) { | ||
te <- tidy_empirical(.x = x_term) | ||
td <- tidy_inverse_weibull(.n = n, .shape = round(iw_shape, 3), .rate = round(iw_rate, 3)) | ||
combined_tbl <- tidy_combine_distributions(te, td) | ||
} | ||
|
||
ret <- dplyr::tibble( | ||
dist_type = "Inverse Weibull", | ||
samp_size = n, | ||
min = minx, | ||
max = maxx, | ||
method = "MLE", | ||
shape = iw_shape, | ||
scale = iw_scale, | ||
rate = iw_rate | ||
) | ||
|
||
# Return ---- | ||
attr(ret, "tibble_type") <- "parameter_estimation" | ||
attr(ret, "family") <- "inverse_weibull" | ||
attr(ret, "x_term") <- .x | ||
attr(ret, "n") <- n | ||
|
||
if (.auto_gen_empirical) { | ||
output <- list( | ||
combined_data_tbl = combined_tbl, | ||
parameter_tbl = ret | ||
) | ||
} else { | ||
output <- list( | ||
parameter_tbl = ret | ||
) | ||
} | ||
|
||
return(output) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
#' Distribution Statistics | ||
#' | ||
#' @family Inverse Weibull | ||
#' @family Distribution Statistics | ||
#' | ||
#' @author Steven P. Sanderson II, MPH | ||
#' | ||
#' @details This function will take in a tibble and returns the statistics | ||
#' of the given type of `tidy_` distribution. It is required that data be | ||
#' passed from a `tidy_` distribution function. | ||
#' | ||
#' @description Returns distribution statistics in a tibble. | ||
#' | ||
#' @param .data The data being passed from a `tidy_` distribution function. | ||
#' | ||
#' @examples | ||
#' library(dplyr) | ||
#' | ||
#' set.seed(123) | ||
#' tidy_inverse_weibull() |> | ||
#' util_inverse_weibull_stats_tbl() |> | ||
#' glimpse() | ||
#' | ||
#' @return | ||
#' A tibble | ||
#' | ||
#' @name util_inverse_weibull_stats_tbl | ||
NULL | ||
#' @export | ||
#' @rdname util_inverse_weibull_stats_tbl | ||
|
||
util_inverse_weibull_stats_tbl <- function(.data) { | ||
|
||
# Immediate check for tidy_ distribution function | ||
if (!"tibble_type" %in% names(attributes(.data))) { | ||
rlang::abort( | ||
message = "You must pass data from the 'tidy_dist' function.", | ||
use_cli_format = TRUE | ||
) | ||
} | ||
|
||
if (attributes(.data)$tibble_type != "tidy_inverse_weibull") { | ||
rlang::abort( | ||
message = "You must use 'tidy_inverse_weibull()'", | ||
use_cli_format = TRUE | ||
) | ||
} | ||
|
||
# Data | ||
data_tbl <- dplyr::as_tibble(.data) | ||
|
||
atb <- attributes(data_tbl) | ||
t <- atb$.shape | ||
q <- atb$.scale | ||
|
||
# Negative log-likelihood function ---- | ||
neg_log_lik <- function(params, data) { | ||
shape <- params[1] | ||
scale <- params[2] | ||
-sum(actuar::dinvweibull(data, shape = shape, scale = scale, log = TRUE)) | ||
} | ||
|
||
# Initial parameter guesses | ||
initial_params <- c(shape = t, scale = q) | ||
|
||
# Optimize to minimize the negative log-likelihood | ||
opt_result <- optim( | ||
par = initial_params, | ||
fn = neg_log_lik, | ||
data = data_tbl$y, | ||
method = "L-BFGS-B", | ||
lower = c(1e-5, 1e-5) | ||
) | ||
|
||
iw_shape <- opt_result$par[1] | ||
iw_scale <- opt_result$par[2] | ||
iw_rate <- 1 / iw_scale | ||
|
||
# Compute statistics | ||
stat_mean <- mean(actuar::rinvweibull(1e5, shape = iw_shape, scale = iw_scale)) | ||
stat_median <- quantile(data_tbl$y, 0.5) | ||
stat_mode <- iw_scale * (1 - 1 / iw_shape)^(1 / iw_shape) | ||
stat_sd <- sqrt(var(actuar::rinvweibull(1e5, shape = iw_shape, scale = iw_scale))) | ||
stat_coef_var <- stat_sd / stat_mean | ||
|
||
# Data Tibble | ||
ret <- dplyr::tibble( | ||
tidy_function = atb$tibble_type, | ||
function_call = atb$dist_with_params, | ||
distribution = dist_type_extractor(atb$tibble_type), | ||
distribution_type = atb$distribution_family_type, | ||
points = atb$.n, | ||
simulations = atb$.num_sims, | ||
mean = stat_mean, | ||
median = stat_median, | ||
mode = stat_mode, | ||
range = paste0("0 to Inf"), | ||
std_dv = stat_sd, | ||
coeff_var = stat_coef_var, | ||
computed_std_skew = tidy_skewness_vec(data_tbl$y), | ||
computed_std_kurt = tidy_kurtosis_vec(data_tbl$y), | ||
ci_lo = ci_lo(data_tbl$y), | ||
ci_hi = ci_hi(data_tbl$y) | ||
) | ||
|
||
# Return | ||
return(ret) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
#' Calculate Akaike Information Criterion (AIC) for Inverse Weibull Distribution | ||
#' | ||
#' This function calculates the Akaike Information Criterion (AIC) for an inverse Weibull | ||
#' distribution fitted to the provided data. | ||
#' | ||
#' @family Utility | ||
#' | ||
#' @author Steven P. Sanderson II, MPH | ||
#' | ||
#' @description | ||
#' This function estimates the shape and scale parameters of an inverse Weibull distribution | ||
#' from the provided data using maximum likelihood estimation, | ||
#' and then calculates the AIC value based on the fitted distribution. | ||
#' | ||
#' @param .x A numeric vector containing the data to be fitted to an inverse Weibull distribution. | ||
#' | ||
#' @details | ||
#' This function fits an inverse Weibull distribution to the provided data using maximum | ||
#' likelihood estimation. It estimates the shape and scale parameters | ||
#' of the inverse Weibull distribution using maximum likelihood estimation. Then, it | ||
#' calculates the AIC value based on the fitted distribution. | ||
#' | ||
#' Initial parameter estimates: The function uses the method of moments estimates | ||
#' as starting points for the shape and scale parameters of the inverse Weibull | ||
#' distribution. | ||
#' | ||
#' Optimization method: The function uses the optim function for optimization. | ||
#' You might explore different optimization methods within optim for potentially | ||
#' better performance. | ||
#' | ||
#' Goodness-of-fit: While AIC is a useful metric for model comparison, it's recommended | ||
#' to also assess the goodness-of-fit of the chosen model using visualization | ||
#' and other statistical tests. | ||
#' | ||
#' @examples | ||
#' # Example 1: Calculate AIC for a sample dataset | ||
#' set.seed(123) | ||
#' x <- tidy_inverse_weibull(.n = 100, .shape = 2, .scale = 1)[["y"]] | ||
#' util_inverse_weibull_aic(x) | ||
#' | ||
#' @return | ||
#' The AIC value calculated based on the fitted inverse Weibull distribution to the provided data. | ||
#' | ||
#' @name util_inverse_weibull_aic | ||
NULL | ||
#' @export | ||
#' @rdname util_inverse_weibull_aic | ||
util_inverse_weibull_aic <- function(.x) { | ||
# Tidyeval | ||
x <- as.numeric(.x) | ||
|
||
# Negative log-likelihood function for inverse Weibull distribution | ||
neg_log_lik_invweibull <- function(par, data) { | ||
shape <- par[1] | ||
scale <- par[2] | ||
-sum(actuar::dinvweibull(data, shape = shape, scale = scale, log = TRUE)) | ||
} | ||
|
||
# Get initial parameter estimates: method of moments | ||
# Note: This assumes the availability of a suitable method for initial parameter estimation. | ||
initial_params <- c(shape = 1, scale = 1) | ||
|
||
# Fit inverse Weibull distribution using optim | ||
fit_invweibull <- optim( | ||
par = initial_params, | ||
fn = neg_log_lik_invweibull, | ||
data = x, | ||
method = "L-BFGS-B", | ||
lower = c(1e-5, 1e-5) | ||
) | ||
|
||
# Extract log-likelihood and number of parameters | ||
logLik_invweibull <- -fit_invweibull$value | ||
k_invweibull <- 2 # Number of parameters for inverse Weibull distribution (shape and scale) | ||
|
||
# Calculate AIC | ||
AIC_invweibull <- 2 * k_invweibull - 2 * logLik_invweibull | ||
|
||
# Return AIC | ||
return(AIC_invweibull) | ||
} |
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Oops, something went wrong.