Skip to content

Commit

Permalink
Merge pull request #497 from spsanderson/development
Browse files Browse the repository at this point in the history
Fixes #477
  • Loading branch information
spsanderson authored May 15, 2024
2 parents 7095ad3 + 711462b commit 0579f2b
Show file tree
Hide file tree
Showing 179 changed files with 1,423 additions and 2 deletions.
3 changes: 3 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,9 @@ export(util_geometric_stats_tbl)
export(util_hypergeometric_aic)
export(util_hypergeometric_param_estimate)
export(util_hypergeometric_stats_tbl)
export(util_inverse_weibull_aic)
export(util_inverse_weibull_param_estimate)
export(util_inverse_weibull_stats_tbl)
export(util_logistic_aic)
export(util_logistic_param_estimate)
export(util_logistic_stats_tbl)
Expand Down
3 changes: 3 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,9 @@ Add function `util_pareto1_stats_tbl()` to create a summary table of the Pareto
9. Fix #478 - Add function `util_paralogistic_param_estimate()` to estimate the parameters of the paralogistic distribution.
Add function `util_paralogistic_aic()` to calculate the AIC for the paralogistic distribution.
Add fnction `util_paralogistic_stats_tbl()` to create a summary table of the paralogistic distribution.
10. Fix #477 - Add function `util_inverse_weibull_param_estimate()` to estimate the parameters of the Inverse Weibull distribution.
Add function `util_inverse_weibull_aic()` to calculate the AIC for the Inverse Weibull distribution.
Add function `util_inverse_weibull_stats_tbl()` to create a summary table of the Inverse Weibull distribution.

## Minor Improvements and Fixes
1. Fix #468 - Update `util_negative_binomial_param_estimate()` to add the use of
Expand Down
119 changes: 119 additions & 0 deletions R/est-param-inv-weibull.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
#' Estimate Inverse Weibull Parameters
#'
#' @family Parameter Estimation
#' @family Inverse Weibull
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function will attempt to estimate the inverse Weibull shape and rate
#' parameters given some vector of values.
#'
#' @description The function will return a list output by default, and if the parameter
#' `.auto_gen_empirical` is set to `TRUE` then the empirical data given to the
#' parameter `.x` will be run through the `tidy_empirical()` function and combined
#' with the estimated inverse Weibull data.
#'
#' @param .x The vector of data to be passed to the function.
#' @param .auto_gen_empirical This is a boolean value of TRUE/FALSE with default
#' set to TRUE. This will automatically create the `tidy_empirical()` output
#' for the `.x` parameter and use the `tidy_combine_distributions()`. The user
#' can then plot out the data using `$combined_data_tbl` from the function output.
#'
#' @examples
#' library(dplyr)
#' library(ggplot2)
#'
#' set.seed(123)
#' x <- tidy_inverse_weibull(100, .shape = 2, .scale = 1)[["y"]]
#' output <- util_inverse_weibull_param_estimate(x)
#'
#' output$parameter_tbl
#'
#' output$combined_data_tbl %>%
#' tidy_combined_autoplot()
#'
#' @return
#' A tibble/list
#'
#' @name util_inverse_weibull_param_estimate
NULL
#' @export
#' @rdname util_inverse_weibull_param_estimate

util_inverse_weibull_param_estimate <- function(.x, .auto_gen_empirical = TRUE) {

# Tidyeval ----
x_term <- as.numeric(.x)
minx <- min(x_term)
maxx <- max(x_term)
n <- length(x_term)
unique_terms <- length(unique(x_term))

# Checks ----
if (!is.numeric(.x)) {
rlang::abort(
message = "The '.x' parameter must be a numeric vector.",
use_cli_format = TRUE
)
}

# Negative log-likelihood function ----
neg_log_lik <- function(params, data) {
shape <- params[1]
scale <- params[2]
-sum(actuar::dinvweibull(data, shape = shape, scale = scale, log = TRUE))
}

# Initial parameter guesses
initial_params <- c(shape = 1, scale = 1)

# Optimize to minimize the negative log-likelihood
opt_result <- optim(
par = initial_params,
fn = neg_log_lik,
data = x_term,
method = "L-BFGS-B",
lower = c(1e-5, 1e-5)
)

iw_shape <- opt_result$par[1]
iw_scale <- opt_result$par[2]
iw_rate <- 1 / iw_scale

# Return Tibble ----
if (.auto_gen_empirical) {
te <- tidy_empirical(.x = x_term)
td <- tidy_inverse_weibull(.n = n, .shape = round(iw_shape, 3), .rate = round(iw_rate, 3))
combined_tbl <- tidy_combine_distributions(te, td)
}

ret <- dplyr::tibble(
dist_type = "Inverse Weibull",
samp_size = n,
min = minx,
max = maxx,
method = "MLE",
shape = iw_shape,
scale = iw_scale,
rate = iw_rate
)

# Return ----
attr(ret, "tibble_type") <- "parameter_estimation"
attr(ret, "family") <- "inverse_weibull"
attr(ret, "x_term") <- .x
attr(ret, "n") <- n

if (.auto_gen_empirical) {
output <- list(
combined_data_tbl = combined_tbl,
parameter_tbl = ret
)
} else {
output <- list(
parameter_tbl = ret
)
}

return(output)
}
108 changes: 108 additions & 0 deletions R/stats-inv-weibull-tbl.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
#' Distribution Statistics
#'
#' @family Inverse Weibull
#' @family Distribution Statistics
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function will take in a tibble and returns the statistics
#' of the given type of `tidy_` distribution. It is required that data be
#' passed from a `tidy_` distribution function.
#'
#' @description Returns distribution statistics in a tibble.
#'
#' @param .data The data being passed from a `tidy_` distribution function.
#'
#' @examples
#' library(dplyr)
#'
#' set.seed(123)
#' tidy_inverse_weibull() |>
#' util_inverse_weibull_stats_tbl() |>
#' glimpse()
#'
#' @return
#' A tibble
#'
#' @name util_inverse_weibull_stats_tbl
NULL
#' @export
#' @rdname util_inverse_weibull_stats_tbl

util_inverse_weibull_stats_tbl <- function(.data) {

# Immediate check for tidy_ distribution function
if (!"tibble_type" %in% names(attributes(.data))) {
rlang::abort(
message = "You must pass data from the 'tidy_dist' function.",
use_cli_format = TRUE
)
}

if (attributes(.data)$tibble_type != "tidy_inverse_weibull") {
rlang::abort(
message = "You must use 'tidy_inverse_weibull()'",
use_cli_format = TRUE
)
}

# Data
data_tbl <- dplyr::as_tibble(.data)

atb <- attributes(data_tbl)
t <- atb$.shape
q <- atb$.scale

# Negative log-likelihood function ----
neg_log_lik <- function(params, data) {
shape <- params[1]
scale <- params[2]
-sum(actuar::dinvweibull(data, shape = shape, scale = scale, log = TRUE))
}

# Initial parameter guesses
initial_params <- c(shape = t, scale = q)

# Optimize to minimize the negative log-likelihood
opt_result <- optim(
par = initial_params,
fn = neg_log_lik,
data = data_tbl$y,
method = "L-BFGS-B",
lower = c(1e-5, 1e-5)
)

iw_shape <- opt_result$par[1]
iw_scale <- opt_result$par[2]
iw_rate <- 1 / iw_scale

# Compute statistics
stat_mean <- mean(actuar::rinvweibull(1e5, shape = iw_shape, scale = iw_scale))
stat_median <- quantile(data_tbl$y, 0.5)
stat_mode <- iw_scale * (1 - 1 / iw_shape)^(1 / iw_shape)
stat_sd <- sqrt(var(actuar::rinvweibull(1e5, shape = iw_shape, scale = iw_scale)))
stat_coef_var <- stat_sd / stat_mean

# Data Tibble
ret <- dplyr::tibble(
tidy_function = atb$tibble_type,
function_call = atb$dist_with_params,
distribution = dist_type_extractor(atb$tibble_type),
distribution_type = atb$distribution_family_type,
points = atb$.n,
simulations = atb$.num_sims,
mean = stat_mean,
median = stat_median,
mode = stat_mode,
range = paste0("0 to Inf"),
std_dv = stat_sd,
coeff_var = stat_coef_var,
computed_std_skew = tidy_skewness_vec(data_tbl$y),
computed_std_kurt = tidy_kurtosis_vec(data_tbl$y),
ci_lo = ci_lo(data_tbl$y),
ci_hi = ci_hi(data_tbl$y)
)

# Return
return(ret)
}
81 changes: 81 additions & 0 deletions R/utils-aic-inv-weibull.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
#' Calculate Akaike Information Criterion (AIC) for Inverse Weibull Distribution
#'
#' This function calculates the Akaike Information Criterion (AIC) for an inverse Weibull
#' distribution fitted to the provided data.
#'
#' @family Utility
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @description
#' This function estimates the shape and scale parameters of an inverse Weibull distribution
#' from the provided data using maximum likelihood estimation,
#' and then calculates the AIC value based on the fitted distribution.
#'
#' @param .x A numeric vector containing the data to be fitted to an inverse Weibull distribution.
#'
#' @details
#' This function fits an inverse Weibull distribution to the provided data using maximum
#' likelihood estimation. It estimates the shape and scale parameters
#' of the inverse Weibull distribution using maximum likelihood estimation. Then, it
#' calculates the AIC value based on the fitted distribution.
#'
#' Initial parameter estimates: The function uses the method of moments estimates
#' as starting points for the shape and scale parameters of the inverse Weibull
#' distribution.
#'
#' Optimization method: The function uses the optim function for optimization.
#' You might explore different optimization methods within optim for potentially
#' better performance.
#'
#' Goodness-of-fit: While AIC is a useful metric for model comparison, it's recommended
#' to also assess the goodness-of-fit of the chosen model using visualization
#' and other statistical tests.
#'
#' @examples
#' # Example 1: Calculate AIC for a sample dataset
#' set.seed(123)
#' x <- tidy_inverse_weibull(.n = 100, .shape = 2, .scale = 1)[["y"]]
#' util_inverse_weibull_aic(x)
#'
#' @return
#' The AIC value calculated based on the fitted inverse Weibull distribution to the provided data.
#'
#' @name util_inverse_weibull_aic
NULL
#' @export
#' @rdname util_inverse_weibull_aic
util_inverse_weibull_aic <- function(.x) {
# Tidyeval
x <- as.numeric(.x)

# Negative log-likelihood function for inverse Weibull distribution
neg_log_lik_invweibull <- function(par, data) {
shape <- par[1]
scale <- par[2]
-sum(actuar::dinvweibull(data, shape = shape, scale = scale, log = TRUE))
}

# Get initial parameter estimates: method of moments
# Note: This assumes the availability of a suitable method for initial parameter estimation.
initial_params <- c(shape = 1, scale = 1)

# Fit inverse Weibull distribution using optim
fit_invweibull <- optim(
par = initial_params,
fn = neg_log_lik_invweibull,
data = x,
method = "L-BFGS-B",
lower = c(1e-5, 1e-5)
)

# Extract log-likelihood and number of parameters
logLik_invweibull <- -fit_invweibull$value
k_invweibull <- 2 # Number of parameters for inverse Weibull distribution (shape and scale)

# Calculate AIC
AIC_invweibull <- 2 * k_invweibull - 2 * logLik_invweibull

# Return AIC
return(AIC_invweibull)
}
1 change: 1 addition & 0 deletions docs/news/index.html

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion docs/pkgdown.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ pkgdown: 2.0.9
pkgdown_sha: ~
articles:
getting-started: getting-started.html
last_built: 2024-05-15T01:57Z
last_built: 2024-05-15T15:39Z
urls:
reference: https://www.spsanderson.com/TidyDensity/reference
article: https://www.spsanderson.com/TidyDensity/articles
Expand Down
1 change: 1 addition & 0 deletions docs/reference/check_duplicate_rows.html

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 1 addition & 0 deletions docs/reference/convert_to_ts.html

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

15 changes: 15 additions & 0 deletions docs/reference/index.html

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading

0 comments on commit 0579f2b

Please sign in to comment.