Skip to content

Commit

Permalink
Update variable names
Browse files Browse the repository at this point in the history
  • Loading branch information
sophie-a-lee committed Nov 10, 2021
1 parent bd6b398 commit 375525a
Show file tree
Hide file tree
Showing 4 changed files with 111,247 additions and 111,196 deletions.
8 changes: 4 additions & 4 deletions 01_exploratory_plots.R
Original file line number Diff line number Diff line change
Expand Up @@ -243,7 +243,7 @@ ggsave(wet_diff, filename = "output/wet_diff.png")
#### Census plots ####
## Urbanisation maps (Figure S4)
df_census <- df_year[df_year$year == 2010,] %>%
left_join(., shp_parent, by = c("municip_code_ibge", "municip_code")) %>%
left_join(., shp_parent, by = c("municip_code_ibge")) %>%
mutate(regic07 = factor(level07_acpnum, levels = 1:5,
labels = c("Metropolis",
"Regional capital",
Expand Down Expand Up @@ -597,8 +597,8 @@ ggsave(perc_region_inset, filename = "output/region_perc_inset.png",

## Year of first outbreak (Figure 5)
df_outbreak <- df_year %>%
mutate(DIR_year = (dengue_year/population)*10^5) %>%
filter(DIR_year >= 300) %>%
mutate(DIR = (dengue_year/population)*10^5) %>%
filter(DIR >= 300) %>%
arrange(municip_code_ibge, year) %>%
group_by(municip_code_ibge) %>%
mutate(first_fix = first(year)) %>%
Expand Down Expand Up @@ -658,7 +658,7 @@ ggsave(first_outbreak_decade, filename = "output/first_outbreak_decade.png",
#### Plot 75th percentile outbreak threshold (Figure M) ####
df_cutoff <- df_year %>%
group_by(municip_code_ibge) %>%
summarise(perc_75 = quantile(DIR_year, .75),
summarise(perc_75 = quantile(DIR, .75),
pop_mean = mean(population)) %>%
ungroup() %>%
# Add minimum cutoff (5 cases)
Expand Down
13 changes: 8 additions & 5 deletions 02_model_fitting.R
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@


#### Load packages ####
pacman::p_load(tidyverse, data.table, sf, mgcv, ROCR)
pacman::p_load(tidyverse, data.table, sf, mgcv)


#### Load data ####
Expand All @@ -17,15 +17,18 @@ df_year <- fread("data/df_model.csv")
#### Create model dataset ####
## Create model variables
df_model <- df_year %>%
mutate(# Recode REGIC to set local centre as reference
regic_comb = factor(ifelse(year %in% 2001:2010, regic07_relevel,
regic18_relevel),
mutate(regic07_relevel = -level07_acpnum + 6,
regic18_relevel = -level18_num + 6,
regic_comb = factor(ifelse(year %in% 2001:2009, regic07_relevel, regic18_relevel),
levels = 1:5,
labels = c("Local centre",
"Zone centre",
"Sub-regional centre",
"Regional capital",
"Metropolis")))
"Metropolis")),
urban = ifelse(urban00 != 0 & !is.na(urban00) & year %in% 2001:2009,
urban00, urban10),
urban_prpn = urban/100)


#### Fit baseline model (with only spatio-temporal smooths) ####
Expand Down
60 changes: 34 additions & 26 deletions 03_model_output.R
Original file line number Diff line number Diff line change
Expand Up @@ -18,15 +18,18 @@ df_year <- fread("data/df_model.csv")


df_model <- df_year %>%
mutate(# Recode REGIC to set local centre as reference
regic_comb = factor(ifelse(year %in% 2001:2010, regic07_relevel,
regic18_relevel),
levels = 1:5,
labels = c("Local centre",
"Zone centre",
"Sub-regional centre",
"Regional capital",
"Metropolis")))
mutate(regic07_relevel = -level07_acpnum + 6,
regic18_relevel = -level18_num + 6,
regic_comb = factor(ifelse(year %in% 2001:2009, regic07_relevel, regic18_relevel),
levels = 1:5,
labels = c("Local centre",
"Zone centre",
"Sub-regional centre",
"Regional capital",
"Metropolis")),
urban = ifelse(urban00 != 0 & !is.na(urban00) & year %in% 2001:2009,
urban00, urban10),
urban_prpn = urban/100)


## Shapefile
Expand All @@ -49,22 +52,22 @@ shp_parent <- left_join(shp, parent_conv,
mutate(municip_code = as.numeric(substr(municip_code_ibge, 1, 6)))


#### Load model objects ####
model_base <- readRDS("output/model_base.rds")
model_full <- readRDS("output/model_full.rds")

## Sensitivity analysis - different variable options
model_full100 <- readRDS("output/model_full100.rds")
model_full_perc75 <- readRDS("output/model_perc75.rds")
model_aeg <- readRDS("output/model_aeg.rds")
model_wet <- readRDS("output/model_wet.rds")


## Sensitivity analysis - remove each variable in turn
model_temp <- readRDS("output/model_temp.rds")
model_prior <- readRDS("output/model_prior.rds")
model_urb <- readRDS("output/model_urb.rds")
model_regic <- readRDS("output/model_regic.rds")
# #### Load model objects ####
# model_base <- readRDS("output/model_base.rds")
# model_full <- readRDS("output/model_full.rds")
#
# ## Sensitivity analysis - different variable options
# model_full100 <- readRDS("output/model_full100.rds")
# model_full_perc75 <- readRDS("output/model_perc75.rds")
# model_aeg <- readRDS("output/model_aeg.rds")
# model_wet <- readRDS("output/model_wet.rds")
#
#
# ## Sensitivity analysis - remove each variable in turn
# model_temp <- readRDS("output/model_temp.rds")
# model_prior <- readRDS("output/model_prior.rds")
# model_urb <- readRDS("output/model_urb.rds")
# model_regic <- readRDS("output/model_regic.rds")


set.seed(123)
Expand All @@ -91,11 +94,15 @@ betas_wet <- rmvn(n.sims, coef(model_wet), model_wet$Vp)

## Estimate beta mean and 95% CI (Table 1 & Table S2)
beta_ci <- function(model, betas) {

# Extract number of fixed covariates
ncov <- min(which(substr(names(coef(model)), 1, 2) == "s(")) - 1

beta_ci <- as_tibble(betas)
names(beta_ci) <- gsub("[[:punct:][:blank:]]+","", names(model$coefficients))

beta_ci <- beta_ci %>%
summarise(across(2:8, list(mean = mean, lower = ~quantile(.x, 0.025),
summarise(across(2:ncov, list(mean = mean, lower = ~quantile(.x, 0.025),
upper = ~quantile(.x, 0.975)),
names = "{.col}.fn{.fn}")) %>%
mutate(across(everything(), ~exp(.x)))
Expand Down Expand Up @@ -265,6 +272,7 @@ ggsave(spat_smooth_plot, filename = "output/spat_smooth_plot.png",
#### Compare smooth terms between models ####
## Function to obtain smooth functions
smooth_estimates <- function(model, data) {

# Obtain simulations from beta posterior distributions (only keep smooth functions)
betas <- rmvn(1000, coef(model), model$Vp)
betas_smooth <- betas[ , substr(names(coefficients(model)), 1, 2) %in%
Expand Down
Loading

0 comments on commit 375525a

Please sign in to comment.