-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathreference_systems.jl
434 lines (331 loc) · 11.8 KB
/
reference_systems.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
##############
# RTN | LVLH #
##############
export rRTNtoECI
"""
Compute the radial, along-track, cross-track (RTN) to Earth-centered inertial
rotation matrix. If applied to a position vector in the RTN frame, it will
transform that vector to into the equivalent position vector in the ECI frame.
The RTN frame is also commonly refered to as the local-vertical, local-horizontal (LVLH) frame.
Arguments:
- `x::AbstractVector{<:Real}`: Inertial state (position and velocity) of primary (observing) satellite
Returns:
- `R_rtn2eci::SMatrix{3,3}`: Rotation matrix transforming _from_ the RTN frame _to_ the ECI frame
"""
function rRTNtoECI(x::AbstractVector{<:Real})
r = x[idx1t3]
v = x[idx4t6]
n = cross(r, v)
R = normalize(r)
N = normalize(n)
T = cross(N, R)
R_rtn2eci = hcat(R, T, N)
return R_rtn2eci
end
export rECItoRTN
"""
Compute the Earth-centered inertial to radial, along-track, cross-track (RTN)
rotation matrix. If applied to a position vector in the ECI frame, it will
transform that vector into the equivalent position vector in the RTN frame.
The RTN frame is also commonly refered to as the local-vertical, local-horizontal (LVLH) frame.
Arguments:
- `x::AbstractVector{<:Real}`: Inertial state (position and velocity) of primary (observing) satellite
Returns:
- `R_eci2rtn::SMatrix{3,3}`: Rotation matrix transforming _from_ the ECI frame _to_ the RTN frame
"""
function rECItoRTN(x::AbstractVector{<:Real})
r = x[idx1t3]
v = x[idx4t6]
n = cross(r, v)
R = normalize(r)
N = normalize(n)
T = cross(N, R)
R_eci2rtn = hcat(R, T, N)'
return R_eci2rtn
end
export sECItoRTN
"""
Compute the radial, along-track, cross-track (RTN) coordinates of a target satellite in the primary satellites RTN frame.
The RTN frame is also commonly refered to as the local-vertical, local-horizontal (LVLH) frame.
Arguments:
- `x::AbstractVector{<:Real}`: Inertial state (position and velocity) of primary (observing) satellite
- `xt::AbstractVector{<:Real}`: Inertial state (position and velocity) of the target satellite
Returns:
- `xrtn::AbstractVector{<:Real}`: Position and velocity of the target relative of the observing satellite in the RTN.
"""
function sECItoRTN(x::AbstractVector{<:Real}, xt::AbstractVector{<:Real})
if length(xt) >= 6
return sECItoRTN(x, xt[idx1t6])
else
return sECItoRTN(x, xt[idx1t3])
end
end
"""
Arguments:
- `x::AbstractVector{<:Real}`: Inertial state (position and velocity) of primary (observing) satellite
- `xt::SVector{3,<:Real}`: Inertial state (position) of the target satellite
Returns:
- `xrtn::SVector{3,<:Real}`: Position of the target relative of the observing satellite in the RTN.
"""
function sECItoRTN(x::AbstractVector{<:Real}, xt::SVector{3,<:Real})
# Create RTN rotation matrix
R_eci2rtn = rECItoRTN(x)
# Transform Position
r = x[idx1t3]
rho = xt[idx1t3] - r
r_rtn = R_eci2rtn*rho
return r_rtn
end
"""
Arguments:
- `x::AbstractVector{<:Real}`: Inertial state (position and velocity) of primary (observing) satellite
- `xt::SVector{6,<:Real}`: Inertial state (position and velocity) of the target satellite
Returns:
- `xrtn::SVector{6,<:Real}`: Position and velocity of the target relative of the observing satellite in the RTN.
"""
function sECItoRTN(x::AbstractVector{<:Real}, xt::SVector{6,<:Real})
# Create RTN rotation matrix
R_eci2rtn = rECItoRTN(x)
# Transform Position
r = x[idx1t3]
rho = xt[idx1t3] - r
r_rtn = R_eci2rtn*rho
v = x[idx4t6]
f_dot = norm(cross(r, v)) / norm(r)^2
omega = SVector(0, 0, f_dot)
rho_dot = xt[idx4t6] - v
v_rtn = R_eci2rtn*rho_dot - cross(omega, r_rtn)
return vcat(r_rtn, v_rtn)
end
export sRTNtoECI
"""
Compute the Earth-center
The RTN frame is also commonly refered to as the local-vertical, local-horizontal (LVLH) frame.
Arguments:
- `x::AbstractVector{<:Real}`: Inertial state (position and velocity) of primary (observing) satellite
- `xrtn::AbstractVector{<:Real}`: Inertial state (position and velocity) of the target satellite
Returns:
- `xt::AbstractVector{<:Real}`: Position and velocity of the target relative of the observing satellite in the RTN.
"""
function sRTNtoECI(x::AbstractVector{<:Real}, xrtn::AbstractVector{<:Real})
if length(xrtn) >= 6
return sRTNtoECI(x, xrtn[idx1t6])
else
return sRTNtoECI(x, xrtn[idx1t3])
end
end
"""
Arguments:
- `x::AbstractVector{<:Real}`: Inertial state (position and velocity) of primary (observing) satellite
- `xrtn::SVector{3,<:Real}`: Inertial state (position) of the target satellite
Returns:
- `xt::SVector{3,<:Real}`: Position of the target relative of the observing satellite in the RTN.
"""
function sRTNtoECI(x::AbstractVector{<:Real}, xrtn::SVector{3,<:Real})
# Create RTN rotation matrix
R_rtn2eci = rRTNtoECI(x)
# Transform position
r = x[idx1t3]
r_t = R_rtn2eci*xrtn + r
return r_t
end
"""
Arguments:
- `x::AbstractVector{<:Real}`: Inertial state (position and velocity) of primary (observing) satellite
- `xrtn::SVector{6,<:Real}`: Inertial state (position and velocity) of the target satellite
Returns:
- `xt::SVector{6,<:Real}`: Position and velocity of the target relative of the observing satellite in the RTN.
"""
function sRTNtoECI(x::AbstractVector{<:Real}, xrtn::SVector{6,<:Real})
# Create RTN rotation matrix
R_rtn2eci = rRTNtoECI(x)
# Transform position
r = x[idx1t3]
r_rtn = xrtn[idx1t3]
r_t = R_rtn2eci*r_rtn + r
# Transform velocity
v = x[idx4t6]
v_rtn = xrtn[idx4t6]
f_dot = norm(cross(r, v)) / norm(r)^2
omega = SVector(0, 0, f_dot)
v_t = R_rtn2eci*(v_rtn + cross(omega, r_rtn)) + v
return vcat(r_t, v_t)
end
#######################################
# IAU 2010 | Inertial <-> Earth-Fixed #
#######################################
export bias_precession_nutation
"""
Computes the Bias-Precession-Nutation matrix transforming the GCRS to the
CIRS intermediate reference frame. This transformation corrects for the
bias, precession, and nutation of Celestial Intermediate Origin (CIO) with
respect to inertial space.
Arguments:
- `epc::Epoch`: Epoch of transformation
Returns:
- `rc2i::Matrix{<:Real}`: 3x3 Rotation matrix transforming GCRS -> CIRS
"""
function bias_precession_nutation(epc::Epoch)
# Compute X, Y, s terms using low-precision series terms
x, y, s = iauXys00b(MJD_ZERO, mjd(epc, tsys="TT"))
# Apply IAU2006 Offsets
mjd_utc = mjd(epc, tsys="UT1")
x += DX(mjd_utc)
y += DY(mjd_utc)
# Compute transformation and return
rc2i = iauC2ixys(x, y, s)
return rc2i
end
export earth_rotation
"""
Computes the Earth rotation matrix transforming the CIRS to the TIRS
intermediate reference frame. This transformation corrects for the Earth
rotation.
Arguments:
- `epc::Epoch`: Epoch of transformation
Returns:
- `r::Matrix{<:Real}`: 3x3 Rotation matrix transforming CIRS -> TIRS
"""
function earth_rotation(epc::Epoch)
# Compute Earth rotation angle
era = iauEra00(MJD_ZERO, mjd(epc, tsys="UT1"))
# Rotate Matrix and return
r = iauRz(era, Matrix{Float64}(I, 3, 3))
return r
end
export polar_motion
"""
Computes the Earth rotation matrix transforming the TIRS to the ITRF reference
frame.
# Arguments
- `epc::Epoch`: Epoch of transformation
# Returns
- `rpm::Matrix{<:Real}`: 3x3 Rotation matrix transforming TIRS -> ITRF
"""
function polar_motion(epc::Epoch)
xp, yp = POLE_LOCATOR(mjd(epc, tsys="UTC"))
# Compute transformation and return
rpm = iauPom00(xp, yp, iauSp00(MJD_ZERO, mjd(epc, tsys="TT")))
return rpm
end
export rECItoECEF
"""
Computes the combined rotation matrix from the inertial to the Earth-fixed
reference frame. Applies corrections for bias, precession, nutation,
Earth-rotation, and polar motion.
The transformation is accomplished using the IAU 2006/2000A, CIO-based
theory using classical angles. The method as described in section 5.5 of
the SOFA C transformation cookbook.
# Arguments
- `epc::Epoch`: Epoch of transformation
# Returns
- `r::Matrix{<:Real}`: 3x3 Rotation matrix transforming GCRF -> ITRF
"""
function rECItoECEF(epc::Epoch)
# Compute intermediate transformations
rc2i = bias_precession_nutation(epc)
r = earth_rotation(epc)
rpm = polar_motion(epc)
return rpm * r * rc2i
end
export rECEFtoECI
"""
Computes the combined rotation matrix from the Earth-fixed to the inertial
reference frame. Applies corrections for bias, precession, nutation,
Earth-rotation, and polar motion.
The transformation is accomplished using the IAU 2006/2000A, CIO-based
theory using classical angles. The method as described in section 5.5 of
the SOFA C transformation cookbook.
# Arguments
- `epc::Epoch`: Epoch of transformation
# Returns
- `r::Matrix{<:Real}`: 3x3 Rotation matrix transforming ITRF -> GCRF
"""
function rECEFtoECI(epc::Epoch)
# Compute intermediate transformations
rc2i = bias_precession_nutation(epc)
r = earth_rotation(epc)
rpm = polar_motion(epc)
return rc2i' * r' * rpm'
end
export sECItoECEF
"""
Transforms an Earth inertial state into an Earth fixed state
The transformation is accomplished using the IAU 2006/2000A, CIO-based
theory using classical angles. The method as described in section 5.5 of
the SOFA C transformation cookbook.
# Arguments
- `epc::Epoch`: Epoch of transformation
- `x::AbstractVector{<:Real}`: Inertial state (position, velocity) [m; m/s]
# Returns
- `x_ecef::Vector{<:Real}`: Earth-fixed state (position, velocity)
"""
function sECItoECEF(epc::Epoch, x::AbstractVector{<:Real})
dim_x = length(x)
x_ecef = zeros(Float64, dim_x)
# Extract State Components
r_eci = x[1:3]
if dim_x >= 6
v_eci = x[4:6]
end
if dim_x == 9
a_eci = x[7:9]
end
# Compute Sequential Transformation Matrices
rc2i = bias_precession_nutation(epc)
r = earth_rotation(epc)
pm = polar_motion(epc)
# Create Earth's Angular Rotation Vector
omega_vec = [0, 0, OMEGA_EARTH] # Neglect LOD effect
# Calculate ECEF State
x_ecef[1:3] = pm * r * rc2i * r_eci
if dim_x == 6
x_ecef[4:6] = pm * (r * rc2i * v_eci - cross(omega_vec, r * rc2i * r_eci))
end
if dim_x == 9
x_ecef[7:9] = pm * (r * rc2i * a_eci - cross(omega_vec, cross(omega_vec, r * rc2i * r_eci))
- 2 * cross(omega_vec, r * rc2i * v_eci))
end
return x_ecef
end
export sECEFtoECI
"""
Transforms an Earth fixed state into an Inertial state
The transformation is accomplished using the IAU 2006/2000A, CIO-based
theory using classical angles. The method as described in section 5.5 of
the SOFA C transformation cookbook.
# Arguments
- `epc::Epoch`: Epoch of transformation
- `x::AbstractVector{<:Real}`: Earth-fixed state (position, velocity) [m; m/s]
# Returns
- `x_eci::Vector{<:Real}`: Inertial state (position, velocity)
"""
function sECEFtoECI(epc::Epoch, x::AbstractVector{<:Real})
# Set state variable size
dim_x = length(x)
x_eci = zeros(Float64, dim_x)
# Extract State Components
r_ecef = x[1:3]
if dim_x >= 6
v_ecef = x[4:6]
end
if dim_x == 9
a_ecef = x[7:9]
end
# Compute Sequential Transformation Matrices
bpn = bias_precession_nutation(epc)
rot = earth_rotation(epc)
pm = polar_motion(epc)
# Create Earth's Angular Rotation Vector
omega_vec = [0, 0, OMEGA_EARTH] # Neglect LOD effect
# Calculate ECEF State
x_eci[1:3] = (pm * rot * bpn)' * r_ecef
if dim_x >= 6
x_eci[4:6] = (rot * bpn)' * ((pm)' * v_ecef + cross(omega_vec, (pm)' * r_ecef))
end
if dim_x >= 9
x_eci[7:9] = (rot * bpn)' * ((pm)' * a_ecef + cross(omega_vec, cross(omega_vec, (pm)' * x_eci[1:3]))
+ 2 * cross(omega_vec, (pm)' * x_eci[4:6]))
end
return x_eci
end