-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathden_gen2.py
116 lines (87 loc) · 4.26 KB
/
den_gen2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch
import torch.nn as nn
from torchvision.models import resnet152
class AuxConv(nn.Module):
def __init__(self, in_channels, c_tag, stride=1, p=0, downsample=False):
super(AuxConv, self).__init__()
self.aux = nn.Sequential(nn.Conv2d(in_channels, c_tag, kernel_size=(3, 1)),
nn.ReLU(),
nn.Dropout(p),
nn.Conv2d(c_tag, c_tag, kernel_size=(1, 3)),
nn.ReLU(),
nn.Dropout(p))
if downsample:
self.aux.add_module('downsample',
nn.Conv2d(c_tag, c_tag, kernel_size=3, stride=2))
def forward(self, input):
return self.aux(input)
class DEN(nn.Module):
def __init__(self, backbone_wts=None, backbone_freeze=True, p=0):
super(DEN, self).__init__()
resnet = resnet152(pretrained=False)
if backbone_wts != None:
resnet = self._init_resnet(resnet, backbone_wts)
if backbone_freeze:
for param in resnet.parameters():
param.requires_grad = False
# prepare the network
self._flat_resnet152(resnet)
aux_1024 = [AuxConv(in_channels=1024, c_tag=16, p=p, downsample=True) for _ in range(13)]
aux_2048 = [AuxConv(in_channels=2048, c_tag=16, p=p) for _ in range(3)]
self.aux_modules = nn.ModuleList(aux_1024 + aux_2048)
self._init_added_weights()
def _init_resnet(self, resnet, backbone_wts):
num_ftrs = resnet.fc.in_features
resnet.fc = nn.Linear(num_ftrs, 25 * 32)
resnet.load_state_dict(torch.load(backbone_wts))
return resnet
def _init_added_weights(self):
for name,param in self.aux_modules.named_parameters():
if 'weight' in name:
nn.init.xavier_uniform_(param)
def _flat_resnet152(self, model):
# break the resent to its building blocks
# into a list
flattened = []
flattened += list(model.children())[:4]
for i in range(4,8):
sequence = list(model.children())[i]
flattened += list(sequence.children())
flattened += list(model.children())[-2:]
self.resnet_top = nn.Sequential(*flattened[:38])
self.resnet_mid = nn.ModuleList(flattened[38:54])
self.avg_pool2d = flattened[54]
self.deconv = nn.Sequential(
self._deconv_block(in_channels=256, kernel_size=3, stride=2, padding=1),
self._deconv_block(in_channels=64, kernel_size=3, stride=2, padding=[2,1]),
self._deconv_block(in_channels=16, kernel_size=3, stride=2, padding=[2,1]),
self._deconv_block(in_channels=4, kernel_size=[3,4], stride=1, padding=2))
def _deconv_block(self, in_channels, kernel_size, stride, padding):
return nn.Sequential(
nn.ConvTranspose2d(in_channels, in_channels,kernel_size,
stride, padding),
nn.BatchNorm2d(in_channels),
nn.ReLU(),
nn.Conv2d(in_channels, in_channels//2, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(in_channels//2),
nn.ReLU(),
nn.Conv2d(in_channels//2, in_channels//2, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(in_channels//2),
nn.ReLU(),
nn.Conv2d(in_channels//2, in_channels//2, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(in_channels//2),
nn.ReLU(),
nn.Conv2d(in_channels//2, in_channels//4, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(in_channels//4),
nn.ReLU()
)
def forward(self, input):
x = self.resnet_top(input)
outputs = []
for i, block in enumerate(self.resnet_mid):
x = block(x)
outputs.append(self.aux_modules[i](x))
x = torch.cat(outputs, dim=1)
x = self.deconv(x)
x = x.view(x.shape[0], -1)
return x