-
Notifications
You must be signed in to change notification settings - Fork 973
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add OLMo model #1676
Merged
Merged
Add OLMo model #1676
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,352 @@ | ||
""" | ||
Copyright 2023-2024 SGLang Team | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
""" | ||
|
||
# Adapted from | ||
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/olmo.py#L1 | ||
"""Inference-only OLMo model compatible with HuggingFace weights.""" | ||
from typing import Iterable, List, Optional, Tuple | ||
|
||
import torch | ||
from torch import nn | ||
from transformers import OlmoConfig | ||
from vllm.distributed import get_tensor_model_parallel_world_size | ||
from vllm.model_executor.layers.linear import ( | ||
MergedColumnParallelLinear, | ||
QKVParallelLinear, | ||
RowParallelLinear, | ||
) | ||
from vllm.model_executor.layers.rotary_embedding import get_rope | ||
from vllm.model_executor.layers.vocab_parallel_embedding import ( | ||
ParallelLMHead, | ||
VocabParallelEmbedding, | ||
) | ||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader | ||
|
||
from sglang.srt.layers.activation import SiluAndMul | ||
from sglang.srt.layers.logits_processor import LogitsProcessor | ||
from sglang.srt.layers.quantization.base_config import QuantizationConfig | ||
from sglang.srt.layers.radix_attention import RadixAttention | ||
from sglang.srt.model_executor.forward_batch_info import ForwardBatch | ||
|
||
|
||
class OlmoAttention(nn.Module): | ||
""" | ||
This is the attention block where the output is computed as | ||
``Attention(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))`` | ||
(plus another skip connection). | ||
""" | ||
|
||
def __init__( | ||
self, | ||
config: OlmoConfig, | ||
layer_id: int = 0, | ||
quant_config: Optional[QuantizationConfig] = None, | ||
): | ||
super().__init__() | ||
self.config = config | ||
self.hidden_size = config.hidden_size | ||
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size() | ||
self.total_num_heads = config.num_attention_heads | ||
|
||
assert self.hidden_size % self.total_num_heads == 0 | ||
assert self.total_num_heads % tensor_model_parallel_world_size == 0 | ||
|
||
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size | ||
self.head_dim = self.hidden_size // self.total_num_heads | ||
self.max_position_embeddings = config.max_position_embeddings | ||
self.rope_theta = config.rope_theta | ||
self.clip_qkv = config.clip_qkv | ||
|
||
# Attention input projection. Projects x -> (q, k, v) | ||
self.qkv_proj = QKVParallelLinear( | ||
self.hidden_size, | ||
self.head_dim, | ||
self.total_num_heads, | ||
bias=config.attention_bias, | ||
) | ||
|
||
# Rotary embeddings. | ||
self.rotary_emb = get_rope( | ||
self.head_dim, | ||
rotary_dim=self.head_dim, | ||
max_position=self.max_position_embeddings, | ||
base=self.rope_theta, | ||
) | ||
self.scaling = self.head_dim**-0.5 | ||
self.attn = RadixAttention( | ||
self.num_heads, | ||
self.head_dim, | ||
self.scaling, | ||
num_kv_heads=self.num_heads, | ||
layer_id=layer_id, | ||
) | ||
|
||
# Attention output projection. | ||
self.o_proj = RowParallelLinear( | ||
self.hidden_size, | ||
self.hidden_size, | ||
bias=config.attention_bias, | ||
) | ||
|
||
def forward( | ||
self, | ||
positions: torch.Tensor, | ||
hidden_states: torch.Tensor, | ||
forward_batch: ForwardBatch, | ||
) -> torch.Tensor: | ||
qkv, _ = self.qkv_proj(hidden_states) | ||
if self.clip_qkv is not None: | ||
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) | ||
q, k, v = qkv.chunk(chunks=3, dim=-1) | ||
q, k = self.rotary_emb(positions, q, k) | ||
attn_output = self.attn(q, k, v, forward_batch) | ||
output, _ = self.o_proj(attn_output) | ||
return output | ||
|
||
|
||
class OlmoMLP(nn.Module): | ||
""" | ||
This is the MLP block where the output is computed as | ||
``MLP(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))`` | ||
(plus another skip connection). | ||
""" | ||
|
||
def __init__( | ||
self, | ||
config: OlmoConfig, | ||
quant_config: Optional[QuantizationConfig] = None, | ||
): | ||
super().__init__() | ||
self.config = config | ||
self.hidden_size = config.hidden_size | ||
self.intermediate_size = config.intermediate_size | ||
|
||
# Feed-forward input projection. | ||
self.gate_up_proj = MergedColumnParallelLinear( | ||
self.hidden_size, | ||
[self.intermediate_size] * 2, | ||
bias=False, | ||
quant_config=quant_config, | ||
) | ||
|
||
# Activation function. | ||
self.act_fn = SiluAndMul() | ||
|
||
# Feed-forward output projection. | ||
self.down_proj = RowParallelLinear( | ||
self.intermediate_size, | ||
self.hidden_size, | ||
bias=False, | ||
quant_config=quant_config, | ||
) | ||
|
||
def forward( | ||
self, | ||
x: torch.Tensor, | ||
) -> torch.Tensor: | ||
gate_up, _ = self.gate_up_proj(x) | ||
x = self.act_fn(gate_up) | ||
x, _ = self.down_proj(x) | ||
return x | ||
|
||
|
||
class OlmoDecoderLayer(nn.Module): | ||
""" | ||
This is a typical transformer block where the output is | ||
computed as ``MLP(LN(x + Attention(LN(x))))`` | ||
(plus another skip connection). | ||
""" | ||
|
||
def __init__( | ||
self, | ||
config: OlmoConfig, | ||
layer_id: int = 0, | ||
quant_config: Optional[QuantizationConfig] = None, | ||
): | ||
super().__init__() | ||
# Attention block. | ||
self.self_attn = OlmoAttention(config, layer_id, quant_config) | ||
|
||
# MLP block. | ||
self.mlp = OlmoMLP(config, quant_config) | ||
|
||
# LayerNorm | ||
self.input_layernorm = nn.LayerNorm( | ||
config.hidden_size, elementwise_affine=False, bias=False | ||
) | ||
self.post_attention_layernorm = nn.LayerNorm( | ||
config.hidden_size, elementwise_affine=False, bias=False | ||
) | ||
|
||
def forward( | ||
self, | ||
positions: torch.Tensor, | ||
hidden_states: torch.Tensor, | ||
forward_batch: ForwardBatch, | ||
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: | ||
# Attention block. | ||
residual = hidden_states | ||
hidden_states = self.input_layernorm(hidden_states) | ||
hidden_states = self.self_attn(positions, hidden_states, forward_batch) | ||
hidden_states = hidden_states + residual | ||
|
||
# MLP block. | ||
residual = hidden_states | ||
hidden_states = self.post_attention_layernorm(hidden_states) | ||
hidden_states = self.mlp(hidden_states) | ||
hidden_states = residual + hidden_states | ||
return hidden_states | ||
|
||
|
||
class OlmoModel(nn.Module): | ||
|
||
def __init__( | ||
self, config: OlmoConfig, quant_config: Optional[QuantizationConfig] = None | ||
): | ||
super().__init__() | ||
self.config = config | ||
|
||
self.embed_tokens = VocabParallelEmbedding( | ||
config.vocab_size, config.hidden_size | ||
) | ||
self.layers = nn.ModuleList( | ||
[ | ||
OlmoDecoderLayer(config, layer_idx, quant_config) | ||
for layer_idx in range(config.num_hidden_layers) | ||
] | ||
) | ||
self.norm = nn.LayerNorm( | ||
config.hidden_size, elementwise_affine=False, bias=False | ||
) | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
positions: torch.Tensor, | ||
forward_batch: ForwardBatch, | ||
input_embeds: torch.Tensor = None, | ||
) -> torch.Tensor: | ||
""" | ||
:param input_ids: A tensor of shape `(batch_size, seq_len)`. | ||
""" | ||
# Get embeddings of input. | ||
# shape: (batch_size, seq_len, d_model) | ||
|
||
if input_embeds is None: | ||
hidden_states = self.embed_tokens(input_ids) | ||
else: | ||
hidden_states = input_embeds | ||
|
||
# Apply blocks one-by-one. | ||
for layer_idx, decoder_layer in enumerate(self.layers): | ||
# shape: (batch_size, seq_len, d_model) | ||
hidden_states = decoder_layer( | ||
positions, | ||
hidden_states, | ||
forward_batch, | ||
) | ||
|
||
# Apply final layer norm. | ||
# shape: (batch_size, seq_len or 1, d_model) | ||
hidden_states = self.norm(hidden_states) | ||
return hidden_states | ||
|
||
|
||
class OlmoForCausalLM(nn.Module): | ||
""" | ||
Extremely barebones HF model wrapper. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
config: OlmoConfig, | ||
cache_config=None, | ||
quant_config: Optional[QuantizationConfig] = None, | ||
): | ||
super().__init__() | ||
self.config = config | ||
self.model = OlmoModel(config, quant_config) | ||
if config.tie_word_embeddings: | ||
self.lm_head = self.model.embed_tokens | ||
else: | ||
self.unpadded_vocab_size = config.vocab_size | ||
self.lm_head = ParallelLMHead( | ||
self.unpadded_vocab_size, | ||
config.hidden_size, | ||
org_num_embeddings=config.vocab_size, | ||
quant_config=quant_config, | ||
) | ||
self.logits_processor = LogitsProcessor(config) | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
positions: torch.Tensor, | ||
forward_batch: ForwardBatch, | ||
input_embeds: torch.Tensor = None, | ||
) -> torch.Tensor: | ||
hidden_states = self.model( | ||
input_ids=input_ids, | ||
positions=positions, | ||
forward_batch=forward_batch, | ||
input_embeds=input_embeds, | ||
) | ||
return self.logits_processor( | ||
input_ids, hidden_states, self.lm_head.weight, forward_batch | ||
) | ||
|
||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): | ||
stacked_params_mapping = [ | ||
# (param_name, shard_name, shard_id) | ||
("qkv_proj", "q_proj", "q"), | ||
("qkv_proj", "k_proj", "k"), | ||
("qkv_proj", "v_proj", "v"), | ||
("gate_up_proj", "gate_proj", 0), | ||
("gate_up_proj", "up_proj", 1), | ||
] | ||
params_dict = dict(self.named_parameters(remove_duplicate=False)) | ||
for name, loaded_weight in weights: | ||
if "rotary_emb.inv_freq" in name: | ||
continue | ||
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: | ||
# Models trained using ColossalAI may include these tensors in | ||
# the checkpoint. Skip them. | ||
continue | ||
# With tie_word_embeddings, we can skip lm_head.weight | ||
# The weight might appear unnecessarily in the files if the model is | ||
# processed with quantization, LoRA, fine-tuning, etc. | ||
if self.config.tie_word_embeddings and "lm_head.weight" in name: | ||
continue | ||
for param_name, weight_name, shard_id in stacked_params_mapping: | ||
if weight_name not in name: | ||
continue | ||
name = name.replace(weight_name, param_name) | ||
# Skip loading extra bias for GPTQ models. | ||
if name.endswith(".bias") and name not in params_dict: | ||
continue | ||
param = params_dict[name] | ||
weight_loader = param.weight_loader | ||
weight_loader(param, loaded_weight, shard_id) | ||
break | ||
else: | ||
# Skip loading extra bias for GPTQ models. | ||
if name.endswith(".bias") and name not in params_dict: | ||
continue | ||
param = params_dict[name] | ||
weight_loader = getattr(param, "weight_loader", default_weight_loader) | ||
weight_loader(param, loaded_weight) | ||
|
||
|
||
EntryClass = OlmoForCausalLM |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@janimo Could you submit another PR to replace this with SGLang's linear?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@zhyncs done #1696