-
-
Notifications
You must be signed in to change notification settings - Fork 563
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
193 additions
and
68 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
using System.Runtime.InteropServices; | ||
|
||
namespace Jint.Native.Math; | ||
|
||
/// <summary> | ||
/// https://raw.githubusercontent.com/es-shims/Math.sumPrecise/main/sum.js | ||
/// adapted from https://github.com/tc39/proposal-math-sum/blob/f4286d0a9d8525bda61be486df964bf2527c8789/polyfill/polyfill.mjs | ||
/// https://www-2.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps | ||
/// Shewchuk's algorithm for exactly floating point addition | ||
/// as implemented in Python's fsum: https://github.com/python/cpython/blob/48dfd74a9db9d4aa9c6f23b4a67b461e5d977173/Modules/mathmodule.c#L1359-L1474 | ||
/// adapted to handle overflow via an additional "biased" partial, representing 2**1024 times its actual value | ||
/// </summary> | ||
internal static class SumPrecise | ||
{ | ||
// exponent 11111111110, significand all 1s | ||
private const double MaxDouble = 1.79769313486231570815e+308; // i.e. (2**1024 - 2**(1023 - 52)) | ||
|
||
// exponent 11111111110, significand all 1s except final 0 | ||
private const double PenultimateDouble = 1.79769313486231550856e+308; // i.e. (2**1024 - 2 * 2**(1023 - 52)) | ||
|
||
private const double Two1023 = 8.98846567431158e+307; // 2 ** 1023 | ||
|
||
// exponent 11111001010, significand all 0s | ||
private const double MaxUlp = MaxDouble - PenultimateDouble; // 1.99584030953471981166e+292, i.e. 2**(1023 - 52) | ||
|
||
[StructLayout(LayoutKind.Auto)] | ||
private readonly record struct TwoSumResult(double Hi, double Lo); | ||
|
||
// prerequisite: $abs(x) >= $abs(y) | ||
private static TwoSumResult TwoSum(double x, double y) | ||
{ | ||
var hi = x + y; | ||
var lo = y - (hi - x); | ||
return new TwoSumResult(hi, lo); | ||
} | ||
|
||
// preconditions: | ||
// - array only contains numbers | ||
// - none of them are -0, NaN, or ±Infinity | ||
// - all of them are finite | ||
internal static double Sum(List<double> array) | ||
{ | ||
double hi, lo; | ||
|
||
List<double> partials = []; | ||
|
||
var overflow = 0; // conceptually 2**1024 times this value; the final partial is biased by this amount | ||
|
||
var index = -1; | ||
|
||
// main loop | ||
while (index + 1 < array.Count) | ||
{ | ||
var x = +array[++index]; | ||
|
||
var actuallyUsedPartials = 0; | ||
for (var j = 0; j < partials.Count; j += 1) | ||
{ | ||
var y = partials[j]; | ||
|
||
if (System.Math.Abs(x) < System.Math.Abs(y)) | ||
{ | ||
var tmp = x; | ||
x = y; | ||
y = tmp; | ||
} | ||
|
||
(hi, lo) = TwoSum(x, y); | ||
|
||
if (double.IsPositiveInfinity(System.Math.Abs(hi))) | ||
{ | ||
var sign = double.IsPositiveInfinity(hi) ? 1 : -1; | ||
overflow += sign; | ||
|
||
x = x - sign * Two1023 - sign * Two1023; | ||
if (System.Math.Abs(x) < System.Math.Abs(y)) | ||
{ | ||
var tmp2 = x; | ||
x = y; | ||
y = tmp2; | ||
} | ||
|
||
var s2 = TwoSum(x, y); | ||
hi = s2.Hi; | ||
lo = s2.Lo; | ||
} | ||
|
||
if (lo != 0) | ||
{ | ||
partials[actuallyUsedPartials] = lo; | ||
actuallyUsedPartials += 1; | ||
} | ||
|
||
x = hi; | ||
} | ||
|
||
while (partials.Count > actuallyUsedPartials) | ||
{ | ||
partials.RemoveAt(partials.Count - 1); | ||
} | ||
|
||
if (x != 0) | ||
{ | ||
partials.Add(x); | ||
} | ||
} | ||
|
||
// compute the exact sum of partials, stopping once we lose precision | ||
var n = partials.Count - 1; | ||
hi = 0; | ||
lo = 0; | ||
|
||
if (overflow != 0) | ||
{ | ||
var next = n >= 0 ? partials[n] : 0; | ||
n -= 1; | ||
if (System.Math.Abs(overflow) > 1 || (overflow > 0 && next > 0) || (overflow < 0 && next < 0)) | ||
{ | ||
return overflow > 0 ? double.PositiveInfinity : double.NegativeInfinity; | ||
} | ||
|
||
// here we actually have to do the arithmetic | ||
// drop a factor of 2 so we can do it without overflow | ||
// assert($abs(overflow) === 1) | ||
var s = TwoSum(overflow * Two1023, next / 2); | ||
hi = s.Hi; | ||
lo = s.Lo; | ||
lo *= 2; | ||
if (double.IsPositiveInfinity(System.Math.Abs(2 * hi))) | ||
{ | ||
// stupid edge case: rounding to the maximum value | ||
// MAX_DOUBLE has a 1 in the last place of its significand, so if we subtract exactly half a ULP from 2**1024, the result rounds away from it (i.e. to infinity) under ties-to-even | ||
// but if the next partial has the opposite sign of the current value, we need to round towards MAX_DOUBLE instead | ||
// this is the same as the "handle rounding" case below, but there's only one potentially-finite case we need to worry about, so we just hardcode that one | ||
if (hi > 0) | ||
{ | ||
if (hi == Two1023 && lo == -(MaxUlp / 2) && n >= 0 && partials[n] < 0) | ||
{ | ||
return MaxDouble; | ||
} | ||
|
||
return double.PositiveInfinity; | ||
} | ||
|
||
if (hi == -Two1023 && lo == (MaxUlp / 2) && n >= 0 && partials[n] > 0) | ||
{ | ||
return -MaxDouble; | ||
} | ||
|
||
return double.NegativeInfinity; | ||
} | ||
|
||
if (lo != 0) | ||
{ | ||
partials[n + 1] = lo; | ||
n += 1; | ||
lo = 0; | ||
} | ||
|
||
hi *= 2; | ||
} | ||
|
||
while (n >= 0) | ||
{ | ||
var x1 = hi; | ||
var y1 = partials[n]; | ||
n -= 1; | ||
// assert: $abs(x1) > $abs(y1) | ||
(hi, lo) = TwoSum(x1, y1); | ||
if (lo != 0) | ||
{ | ||
break; // eslint-disable-line no-restricted-syntax | ||
} | ||
} | ||
|
||
// handle rounding | ||
// when the roundoff error is exactly half of the ULP for the result, we need to check one more partial to know which way to round | ||
if (n >= 0 && ((lo < 0.0 && partials[n] < 0.0) || (lo > 0.0 && partials[n] > 0.0))) | ||
{ | ||
var y2 = lo * 2.0; | ||
var x2 = hi + y2; | ||
var yr = x2 - hi; | ||
if (y2 == yr) | ||
{ | ||
hi = x2; | ||
} | ||
} | ||
|
||
return hi; | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters