Understanding Linear Regression with scikit-learn and using Sales for the same.
Reference : https://github.com/justmarkham/DAT4/blob/master/notebooks/08_linear_regression.ipynb
Need python installed on computer. I used IDLE IDE to run python scripts
>>> import pandas as pd
>>> import matplotlib.pyplot as plt
# read data into dataframe
>>> data = pd.read_csv("Advertising.csv", index_col=0)
>>> data.head()
TV Radio Newspaper Sales
1 230.1 37.8 69.2 22.1
2 44.5 39.3 45.1 10.4
3 17.2 45.9 69.3 9.3
4 151.5 41.3 58.5 18.5
5 180.8 10.8 58.4 12.9
#print the shape of dataframe
>>> data.shape
(200, 4)
# visualize the relationship between the features and the response using scatterplots
>>> fig, axs = plt.subplots(1,3, sharey=True)
>>> data.plot(kind='scatter',x='TV',y='Sales',ax=axs[0],figsize=(16,8))
<matplotlib.axes._subplots.AxesSubplot object at 0x065CD3D0>
>>> data.plot(kind='scatter', x='Radio', y='Sales', ax=axs[1])
<matplotlib.axes._subplots.AxesSubplot object at 0x06617C10>
>>> data.plot(kind='scatter', x='Newspaper', y='Sales', ax=axs[2])
<matplotlib.axes._subplots.AxesSubplot object at 0x067E5FF0>
>>>import pylab
>>> pylab.show()