Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
sanathvernekar authored Apr 10, 2018
1 parent dfb32f5 commit 90b34ab
Show file tree
Hide file tree
Showing 13 changed files with 697 additions and 0 deletions.
Binary file added Activity4_Data1.xlsx
Binary file not shown.
Binary file added Activity4_Data2.xlsx
Binary file not shown.
Binary file modified Activity_1_Data.xlsx
Binary file not shown.
Binary file added Activity_2_Data.xlsx
Binary file not shown.
Binary file added Activity_3_Data.xlsx
Binary file not shown.
103 changes: 103 additions & 0 deletions Fit_1st_order_curve(straight_line).py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 26 14:33:05 2018
@author: sanath
"""

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 26 13:54:34 2018
@author: sanath
"""

#using the formula method
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt



#fit 1st order curve for x and y

#fit 1 st order straight line
#based on formula method

def a1(x,y):
x=np.array(x)
y=np.array(y)
val=((len(x)*sum(x*y))-(sum(x)*sum(y)))/((len(x)*sum(x*x))-(sum(x)*sum(x)))
return(val)
def a0(x,y,res_a1):
x=np.array(x)
y=np.array(y)
val=(sum(y)/len(y))-((res_a1*sum(x))/len(x))
return(val)


#n=int(input("Enter number of variables in X "))
#x = [float(x) for x in input().split()]
#y = [float(x) for x in input().split()]



dfs=pd.read_excel("Activity_2_Data.xlsx",sheetname="Sheet1")
x=np.array(dfs.iloc[0:,0])
#print(x)


#print(len(x))
y=np.array(dfs.iloc[0:,4])
#print(y)
#print(len(y))


plt.plot(x,y)
plt.show()

xlen=len(x)
ylen=len(y)
plt.figure(1)
plt.plot(x,y)
plt.show()
if xlen!=ylen:
print("Enter equal number of samples for both x and y")
quit()
res_a1=a1(y,x)
res_a0=a0(x,y,res_a1)
print("y =",res_a0,'+',res_a1,'x')


x_new=np.arange(1,101)
#print(x_new)
y_new=[]

for ele in x_new:
#print(ele)
#print(res_a0+(res_a1*ele))
y_new.append(res_a0+(res_a1*ele))
#print(y_new)
plt.figure(2)
plt.plot(x,y)
plt.plot(x_new,y_new)
plt.show()

pred_x=float(input("Enter the value to be predicted:- "))
pred_y=(res_a0+(res_a1*pred_x))
print("Predicted value for ",pred_x," is ", pred_y)

"""
x=np.array(x)
y=np.array(y)
x_first=[]
for i in range(xlen):
x_first.append(res_a0+(res_a1*x[i]))
x_first=np.array(x_first)
plt.figure(2)
plt.plot(y,x_first)
plt.show()
"""
170 changes: 170 additions & 0 deletions Gradient_descent_with_bias.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 12 17:17:17 2018
@author: sanath
"""

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

dfs=pd.read_excel("Activity_2_Data.xlsx",sheetname="Sheet1")
x=np.array(dfs.iloc[0:,0])
y=np.array(dfs.iloc[0:,4])
plt.figure(1)
plt.xlabel("X")
plt.ylabel("Y")
plt.plot(x,y)
plt.show()

m=len(x)

X=np.array(x)
Y=np.array(y)


theta0=100
init_theta0=theta0
theta1=25
init_theta1=theta1
m=len(X)
alpha=0.0001

print("Learning rate is ",alpha)
print("Number of samples or data is",m)
count=0
while(True):
cost_J0=0
cost_J1=0
for i in range(m):
h_x=theta0+theta1*X[i]
cost_J0=cost_J0+(h_x-Y[i])
cost_J1=cost_J1+((h_x-Y[i])*X[i])

count+=1
#uncomment to see variation of theta
#print("iteration",count,"theta0",theta0,"theta1",theta1)



temp0=theta0-((alpha*cost_J0)/m)
temp1=theta1-((alpha/m)*cost_J1)

if((np.abs(temp0-theta0)<0.00001)and(np.abs(temp1-theta1)<0.00001)):
break
theta0=temp0
theta1=temp1

h=[]
for i in range(m):
h.append(theta1*X[i]+theta0)

h=np.array(h)
plt.figure(2)
plt.xlabel("X")
plt.ylabel("Hypothesis")
plt.plot(X,Y)
plt.plot(X,h)
plt.show()




print ("Assumed theta0 is ",init_theta0,"predicted theta0 is ",theta0)
print("Assumed theta1 is ",init_theta1,"predicted theta1 is ",theta1)
test_x=float(input("Enter a test sample:"))
predicted_y=(test_x*theta1)+theta0
#implementation of gradient descent for 1 st order curve(straight line)

print ("The value of predicted y is",predicted_y)

print("Importance feature scaling ,here you can see that the number of iteration it took to calculate the theta0 and theta1 are ",count," iterations ,so here if we scale down the x and y values to certain range i.e by normalisation,we can reduce the number of iterations it took to calculate the theta0 and theta1 ,or the other way is to judge the random theta0 and theta1 values by seeing the plot which are very close to each other ,so by this also we can reduce the number of iterations and computing time of the program")



















"""
#dummy code (test code)
theta0=4
theta1=3
m=len(X)
alpha=0.001
while(True):
cost_J0=0
cost_J1=0
for i in range(m):
h_x=theta0+theta1*X[i]
cost_J0=cost_J0+(h_x-Y[i])
cost_J1=cost_J1+((h_x-Y[i])*X[i])
temp0=theta0-((alpha*cost_J0)/m)
temp1=theta1-((alpha/m)*cost_J1)
if((np.abs(temp0-theta0)<0.01)and(np.abs(temp1-theta1)<0.01)):
break
theta0=temp0
theta1=temp1
h=[]
for i in range(m):
h.append(theta1*X[i]+theta0)
h=np.array(h)
plt.xlabel("X")
plt.ylabel("Hypothesis")
plt.plot(X,h)
print ("theta0={0} theta1={1}").format(theta0,theta1)
test_x=input("Enter a test sample:" )
predicted_y=(test_x*theta1)+theta0
print ("The value of predicted y is"),predicted_y
"""


"""
#
for j in range(m):
res=res+((theta0+theta1*x[j])-y[j])
new_theta0=theta0-((alpha/m)*(res))
print("Assumed Theta0 is ",theta0," New theta1 is",new_theta0 )
for j in range(m):
res_theta1=res_theta1+((theta0+theta1*x[j])-y[j])*x[j]
new_theta1=theta1-((alpha/m)*res_theta1)
print("Assumed Theta1 is ",theta1,"new theta1 is",new_theta1)
hyp=[]
for ele in x:
hyp.append((new_theta0+(new_theta1*ele)))
hyp=np.array(hyp)
plt.figure(2)
plt.plot(x,y)
plt.plot(x,hyp)
plt.show()
"""

82 changes: 82 additions & 0 deletions SSD_of_array.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 27 14:52:23 2018
@author: sanath
"""



#ssd implementation for theta0=0 and alpha(learning rate=1)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

dfs=pd.read_excel("Activity_2_Data.xlsx",sheetname="Sheet1")
x=np.array(dfs.iloc[0:,0])
#x=[1,2,3,4,5]
y=np.array(dfs.iloc[0:,4])
#y=[1,2,3,4,5]
plt.figure(1)
plt.plot(x,y)
plt.show()

range_of_theta=[-10,10]
number_of_samples=50
theta=np.linspace(range_of_theta[0],range_of_theta[1],number_of_samples)
min_cost=999999
cost_array=[]
m=len(y)
for i in range(number_of_samples):
cost_j=0

for j in range(m):
cost_j=cost_j+(theta[i]*x[j]-y[j])**2
cost_j==1/(2.0*m)*cost_j
cost_array.append(cost_j)


if cost_j<min_cost:
min_cost=cost_j
theta_hyp = theta[i]
index_min=i
h=[]
for i in range(m):
h.append(theta_hyp*x[i])

plt.figure(1)
plt.plot(theta,cost_array)
plt.scatter(theta,cost_array)
plt.show()


plt.figure(2)
plt.plot(theta,cost_array,'g',theta_hyp,min_cost,'rd')
plt.show()

plt.figure(3)
print("Predicted curve vs actual curve")
plt.xlabel("X")
plt.ylabel("PREDECTED Y")
plt.plot(x,y)
#plt.scatter(x,y)
plt.plot(x,h)
plt.show()

test_x=float(input("Enter the test value for x :-"))
print("predicted hyphothesis value is :-",test_x*theta_hyp)














Loading

0 comments on commit 90b34ab

Please sign in to comment.