Skip to content

runpod/ai-sdk-provider

Repository files navigation

Runpod AI SDK Provider

The Runpod provider for the AI SDK contains language model and image generation support for Runpod's public endpoints.

Setup

The Runpod provider is available in the @runpod/ai-sdk-provider module. You can install it with:

# npm
npm install @runpod/ai-sdk-provider

# pnpm
pnpm add @runpod/ai-sdk-provider

# yarn
yarn add @runpod/ai-sdk-provider

# bun
bun add @runpod/ai-sdk-provider

Provider Instance

You can import the default provider instance runpod from @runpod/ai-sdk-provider:

import { runpod } from '@runpod/ai-sdk-provider';

If you need a customized setup, you can import createRunpod and create a provider instance with your settings:

import { createRunpod } from '@runpod/ai-sdk-provider';

const runpod = createRunpod({
  apiKey: 'your-api-key', // optional, defaults to RUNPOD_API_KEY environment variable
  baseURL: 'custom-url', // optional, for custom endpoints
  headers: {
    /* custom headers */
  }, // optional
});

You can use the following optional settings to customize the Runpod provider instance:

  • baseURL string

    Use a different URL prefix for API calls, e.g. to use proxy servers or custom endpoints. Supports vLLM deployments, SGLang servers, and any OpenAI-compatible API. The default prefix is https://api.runpod.ai/v2.

  • apiKey string

    API key that is being sent using the Authorization header. It defaults to the RUNPOD_API_KEY environment variable. You can obtain your api key from the Runpod Console under "API Keys".

  • headers Record<string,string>

    Custom headers to include in the requests.

  • fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>

    Custom fetch implementation. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.

Language Models

You can create language models using the provider instance. The first argument is the model ID:

import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';

const { text } = await generateText({
  model: runpod('qwen/qwen3-32b-awq'),
  prompt: 'What is the capital of Germany?',
});

Returns:

  • text - Generated text string
  • finishReason - Why generation stopped ('stop', 'length', etc.)
  • usage - Token usage information (prompt, completion, total tokens)

Streaming

import { runpod } from '@runpod/ai-sdk-provider';
import { streamText } from 'ai';

const { textStream } = await streamText({
  model: runpod('qwen/qwen3-32b-awq'),
  prompt:
    'Write a short poem about artificial intelligence in exactly 4 lines.',
  temperature: 0.7,
});

for await (const delta of textStream) {
  process.stdout.write(delta);
}

Model Capabilities

Model ID Description Streaming Object Generation Tool Usage Reasoning Notes
qwen/qwen3-32b-awq 32B parameter multilingual model with strong reasoning capabilities Standard reasoning events
openai/gpt-oss-120b 120B parameter open-source GPT model Standard reasoning events
deepcogito/cogito-671b-v2.1-fp8 671B parameter Cogito model with FP8 quantization Standard reasoning events

Note: This list is not complete. For a full list of all available models, see the Runpod Public Endpoint Reference.

Chat Conversations

const { text } = await generateText({
  model: runpod('qwen/qwen3-32b-awq'),
  messages: [
    { role: 'system', content: 'You are a helpful assistant.' },
    { role: 'user', content: 'What is the capital of France?' },
  ],
});

Tool Calling

import { generateText, tool } from 'ai';
import { z } from 'zod';

const { text, toolCalls } = await generateText({
  model: runpod('openai/gpt-oss-120b'),
  prompt: 'What is the weather like in San Francisco?',
  tools: {
    getWeather: tool({
      description: 'Get weather information for a city',
      inputSchema: z.object({
        city: z.string().describe('The city name'),
      }),
      execute: async ({ city }) => {
        return `The weather in ${city} is sunny.`;
      },
    }),
  },
});

Additional Returns:

  • toolCalls - Array of tool calls made by the model
  • toolResults - Results from executed tools

Structured output

Using generateObject to enforce structured ouput is not supported by two models that are part of this provider.

You can still return structured data by instructing the model to return JSON and validating it yourself.

import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';
import { z } from 'zod';

const RecipeSchema = z.object({
  name: z.string(),
  ingredients: z.array(z.string()),
  steps: z.array(z.string()),
});

const { text } = await generateText({
  model: runpod('qwen/qwen3-32b-awq'),
  messages: [
    {
      role: 'system',
      content:
        'return ONLY valid JSON matching { name: string; ingredients: string[]; steps: string[] }',
    },
    { role: 'user', content: 'generate a lasagna recipe.' },
  ],
  temperature: 0,
});

const parsed = JSON.parse(text);
const result = RecipeSchema.safeParse(parsed);

if (!result.success) {
  // handle invalid JSON shape
}

console.log(result.success ? result.data : parsed);

Image Models

You can create Runpod image models using the .imageModel() factory method.

Basic Usage

import { runpod } from '@runpod/ai-sdk-provider';
import { experimental_generateImage as generateImage } from 'ai';

const { image } = await generateImage({
  model: runpod.imageModel('qwen/qwen-image'),
  prompt: 'A serene mountain landscape at sunset',
  aspectRatio: '4:3',
});

// Save to filesystem
import { writeFileSync } from 'fs';
writeFileSync('landscape.jpg', image.uint8Array);

Returns:

  • image.uint8Array - Binary image data (efficient for processing/saving)
  • image.base64 - Base64 encoded string (for web display)
  • image.mediaType - MIME type ('image/jpeg' or 'image/png')
  • warnings - Array of any warnings about unsupported parameters

Model Capabilities

Model ID Type
bytedance/seedream-3.0 t2i
bytedance/seedream-4.0 t2i
bytedance/seedream-4.0-edit edit
black-forest-labs/flux-1-schnell t2i
black-forest-labs/flux-1-dev t2i
black-forest-labs/flux-1-kontext-dev edit
qwen/qwen-image t2i
qwen/qwen-image-edit edit
nano-banana-edit edit
google/nano-banana-pro-edit edit
pruna/p-image-t2i t2i
pruna/p-image-edit edit

For the full list of models, see the Runpod Public Endpoint Reference.

Pruna Models

Supported models: pruna/p-image-t2i, pruna/p-image-edit

Parameter Supported Values Notes
aspectRatio 1:1, 16:9, 9:16, 4:3, 3:4, 3:2, 2:3 Standard AI SDK parameter
aspectRatio (t2i only) custom Requires width & height in providerOptions
providerOptions.runpod.width / height 256 - 1440 Custom dimensions (t2i only). Must be multiple of 16.
providerOptions.runpod.images string[] Required for p-image-edit. Supports 1-5 images.

Example: Custom Resolution (t2i)

const { image } = await generateImage({
  model: runpod.imageModel('pruna/p-image-t2i'),
  prompt: 'A robot',
  providerOptions: {
    runpod: {
      aspect_ratio: 'custom',
      width: 512,
      height: 768,
    },
  },
});

Google Models

Nano Banana Pro

Supported model: google/nano-banana-pro-edit

Parameter Supported Values Notes
aspectRatio 1:1, 16:9, 9:16, 4:3, 3:4, 3:2, 2:3, 21:9, 9:21 Standard AI SDK parameter
resolution 1k, 2k, 4k Output resolution quality
output_format jpeg, png, webp Output image format
providerOptions.runpod.images string[] Required. Input image(s) to edit.

Other Models

Most other models (Flux, Seedream, Qwen, etc.) support standard 1:1, 4:3, and 3:4 aspect ratios.

  • Flux models: Support num_inference_steps and guidance settings.
  • Edit models: Require an input image via providerOptions.runpod.image (single) or images (multiple).

Advanced Parameters

const { image } = await generateImage({
  model: runpod.imageModel('bytedance/seedream-3.0'),
  prompt: 'A sunset over mountains',
  size: '1328x1328',
  seed: 42,
  providerOptions: {
    runpod: {
      negative_prompt: 'blurry, low quality',
      enable_safety_checker: true,
    },
  },
});

Modify Image

Transform existing images using text prompts.

// Example: Transform existing image
const { image } = await generateImage({
  model: runpod.imageModel('black-forest-labs/flux-1-kontext-dev'),
  prompt: 'Transform this into a cyberpunk style with neon lights',
  aspectRatio: '1:1',
  providerOptions: {
    runpod: {
      image: 'https://example.com/input-image.jpg',
    },
  },
});

// Example: Using base64 encoded image
const { image } = await generateImage({
  model: runpod.imageModel('black-forest-labs/flux-1-kontext-dev'),
  prompt: 'Make this image look like a painting',
  providerOptions: {
    runpod: {
      image: '...',
    },
  },
});
// Example: Combine multiple images using Nano Banana edit
const { image } = await generateImage({
  model: runpod.imageModel('nano-banana-edit'),
  prompt:
    'Combine these four images into a single realistic 3D character scene.',
  // Defaults to 1:1; you can also set size: '1328x1328' or aspectRatio: '4:3'
  providerOptions: {
    runpod: {
      images: [
        'https://image.runpod.ai/uploads/0bz_xzhuLq/a2166199-5bd5-496b-b9ab-a8bae3f73bdc.jpg',
        'https://image.runpod.ai/uploads/Yw86rhY6xi/2ff8435f-f416-4096-9a4d-2f8c838b2d53.jpg',
        'https://image.runpod.ai/uploads/bpCCX9zLY8/3bc27605-6f9a-40ad-83e9-c29bed45fed9.jpg',
        'https://image.runpod.ai/uploads/LPHEY6pyHp/f950ceb8-fafa-4800-bdf1-fd3fd684d843.jpg',
      ],
      enable_safety_checker: true,
    },
  },
});

Check out our examples for more code snippets on how to use all the different models.

Advanced Configuration

// Full control over generation parameters
const { image } = await generateImage({
  model: runpod.imageModel('black-forest-labs/flux-1-dev'),
  prompt: 'A majestic dragon breathing fire in a medieval castle',
  size: '1328x1328',
  seed: 42, // For reproducible results
  providerOptions: {
    runpod: {
      negative_prompt: 'blurry, low quality, distorted, ugly, bad anatomy',
      enable_safety_checker: true,
      num_inference_steps: 50, // Higher quality (default: 28)
      guidance: 3.5, // Stronger prompt adherence (default: 2)
      output_format: 'png', // High quality format
      // Polling settings for long generations
      maxPollAttempts: 30,
      pollIntervalMillis: 4000,
    },
  },
});

// Fast generation with minimal steps
const { image } = await generateImage({
  model: runpod.imageModel('black-forest-labs/flux-1-schnell'),
  prompt: 'A simple red apple',
  aspectRatio: '1:1',
  providerOptions: {
    runpod: {
      num_inference_steps: 2, // Even faster (default: 4)
      guidance: 10, // Higher guidance for simple prompts
      output_format: 'jpg', // Smaller file size
    },
  },
});

Provider Options

Use providerOptions.runpod for model-specific parameters:

Option Type Default Description
negative_prompt string "" What to avoid in the image
enable_safety_checker boolean true Content safety filtering
disable_safety_checker boolean false Disable safety checker (Pruna)
image string - Input image URL or base64 (Flux Kontext)
images string[] - Multiple input images (edit models)
resolution string "1k" Output resolution: 1k, 2k, 4k (Nano Banana Pro)
width / height number - Custom dimensions (Pruna t2i, 256-1440)
num_inference_steps number Auto Denoising steps
guidance number Auto Prompt adherence strength
output_format string "png" Output format: png, jpg, jpeg, webp
maxPollAttempts number 60 Max polling attempts
pollIntervalMillis number 5000 Polling interval (ms)

Speech

You can generate speech using the AI SDK's experimental_generateSpeech and a Runpod speech model created via runpod.speechModel() (or the shorthand runpod.speech()).

Basic Usage

import { runpod } from '@runpod/ai-sdk-provider';
import { experimental_generateSpeech as generateSpeech } from 'ai';

const result = await generateSpeech({
  model: runpod.speechModel('resembleai/chatterbox-turbo'),
  text: 'Hello, this is Chatterbox Turbo running on Runpod.',
  voice: 'lucy',
});

// Save to filesystem:
import { writeFileSync } from 'fs';
writeFileSync('speech.wav', result.audio.uint8Array);

Returns:

  • result.audio.uint8Array - Binary audio data (efficient for processing/saving)
  • result.audio.base64 - Base64 encoded audio (useful for web embedding)
  • result.audio.mediaType - MIME type (e.g. audio/wav)
  • result.audio.format - Format (e.g. wav)
  • result.warnings - Array of any warnings about unsupported parameters
  • result.providerMetadata.runpod.audioUrl - Public URL to the generated audio
  • result.providerMetadata.runpod.cost - Cost information (if available)

Supported Models

Supported model: resembleai/chatterbox-turbo

Parameters

Parameter Type Default Description
text string - Required. The text to convert to speech.
voice string "lucy" Built-in voice name (see list below).

Provider Options

Use providerOptions.runpod for model-specific parameters:

Option Type Default Description
voice_url string - URL to audio file (5–10s) for voice cloning
voiceUrl string - Alias for voice_url

Note: If voice_url is provided, the built-in voice is ignored.

Note: This speech endpoint currently returns WAV only; outputFormat is ignored.

Voices

voice selects one of the built-in voices (default: lucy):

[
  'aaron',
  'abigail',
  'anaya',
  'andy',
  'archer',
  'brian',
  'chloe',
  'dylan',
  'emmanuel',
  'ethan',
  'evelyn',
  'gavin',
  'gordon',
  'ivan',
  'laura',
  'lucy',
  'madison',
  'marisol',
  'meera',
  'walter',
];

Voice cloning (via URL)

You can provide a voice_url (5–10s audio) through providerOptions.runpod:

const result = await generateSpeech({
  model: runpod.speech('resembleai/chatterbox-turbo'),
  text: 'Hello!',
  providerOptions: {
    runpod: {
      voice_url: 'https://example.com/voice.wav',
    },
  },
});

About Runpod

Runpod is the foundation for developers to build, deploy, and scale custom AI systems.

Beyond some of the public endpoints you've seen above (+ more generative media APIs), Runpod offers private serverless endpoints / pods / instant clusters, so that you can train, fine-tune or run any open-source or private model on your terms.

About

A custom provider for the Vercel AI SDK

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •