The Runpod provider for the AI SDK contains language model and image generation support for Runpod's public endpoints.
The Runpod provider is available in the @runpod/ai-sdk-provider module. You can install it with:
# npm
npm install @runpod/ai-sdk-provider
# pnpm
pnpm add @runpod/ai-sdk-provider
# yarn
yarn add @runpod/ai-sdk-provider
# bun
bun add @runpod/ai-sdk-providerYou can import the default provider instance runpod from @runpod/ai-sdk-provider:
import { runpod } from '@runpod/ai-sdk-provider';If you need a customized setup, you can import createRunpod and create a provider instance with your settings:
import { createRunpod } from '@runpod/ai-sdk-provider';
const runpod = createRunpod({
apiKey: 'your-api-key', // optional, defaults to RUNPOD_API_KEY environment variable
baseURL: 'custom-url', // optional, for custom endpoints
headers: {
/* custom headers */
}, // optional
});You can use the following optional settings to customize the Runpod provider instance:
-
baseURL string
Use a different URL prefix for API calls, e.g. to use proxy servers or custom endpoints. Supports vLLM deployments, SGLang servers, and any OpenAI-compatible API. The default prefix is
https://api.runpod.ai/v2. -
apiKey string
API key that is being sent using the
Authorizationheader. It defaults to theRUNPOD_API_KEYenvironment variable. You can obtain your api key from the Runpod Console under "API Keys". -
headers Record<string,string>
Custom headers to include in the requests.
-
fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>
Custom fetch implementation. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.
You can create language models using the provider instance. The first argument is the model ID:
import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';
const { text } = await generateText({
model: runpod('qwen/qwen3-32b-awq'),
prompt: 'What is the capital of Germany?',
});Returns:
text- Generated text stringfinishReason- Why generation stopped ('stop', 'length', etc.)usage- Token usage information (prompt, completion, total tokens)
import { runpod } from '@runpod/ai-sdk-provider';
import { streamText } from 'ai';
const { textStream } = await streamText({
model: runpod('qwen/qwen3-32b-awq'),
prompt:
'Write a short poem about artificial intelligence in exactly 4 lines.',
temperature: 0.7,
});
for await (const delta of textStream) {
process.stdout.write(delta);
}| Model ID | Description | Streaming | Object Generation | Tool Usage | Reasoning Notes |
|---|---|---|---|---|---|
qwen/qwen3-32b-awq |
32B parameter multilingual model with strong reasoning capabilities | ✅ | ❌ | ✅ | Standard reasoning events |
openai/gpt-oss-120b |
120B parameter open-source GPT model | ✅ | ❌ | ✅ | Standard reasoning events |
deepcogito/cogito-671b-v2.1-fp8 |
671B parameter Cogito model with FP8 quantization | ✅ | ❌ | ✅ | Standard reasoning events |
Note: This list is not complete. For a full list of all available models, see the Runpod Public Endpoint Reference.
const { text } = await generateText({
model: runpod('qwen/qwen3-32b-awq'),
messages: [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'What is the capital of France?' },
],
});import { generateText, tool } from 'ai';
import { z } from 'zod';
const { text, toolCalls } = await generateText({
model: runpod('openai/gpt-oss-120b'),
prompt: 'What is the weather like in San Francisco?',
tools: {
getWeather: tool({
description: 'Get weather information for a city',
inputSchema: z.object({
city: z.string().describe('The city name'),
}),
execute: async ({ city }) => {
return `The weather in ${city} is sunny.`;
},
}),
},
});Additional Returns:
toolCalls- Array of tool calls made by the modeltoolResults- Results from executed tools
Using generateObject to enforce structured ouput is not supported by two models that are part of this provider.
You can still return structured data by instructing the model to return JSON and validating it yourself.
import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';
import { z } from 'zod';
const RecipeSchema = z.object({
name: z.string(),
ingredients: z.array(z.string()),
steps: z.array(z.string()),
});
const { text } = await generateText({
model: runpod('qwen/qwen3-32b-awq'),
messages: [
{
role: 'system',
content:
'return ONLY valid JSON matching { name: string; ingredients: string[]; steps: string[] }',
},
{ role: 'user', content: 'generate a lasagna recipe.' },
],
temperature: 0,
});
const parsed = JSON.parse(text);
const result = RecipeSchema.safeParse(parsed);
if (!result.success) {
// handle invalid JSON shape
}
console.log(result.success ? result.data : parsed);You can create Runpod image models using the .imageModel() factory method.
import { runpod } from '@runpod/ai-sdk-provider';
import { experimental_generateImage as generateImage } from 'ai';
const { image } = await generateImage({
model: runpod.imageModel('qwen/qwen-image'),
prompt: 'A serene mountain landscape at sunset',
aspectRatio: '4:3',
});
// Save to filesystem
import { writeFileSync } from 'fs';
writeFileSync('landscape.jpg', image.uint8Array);Returns:
image.uint8Array- Binary image data (efficient for processing/saving)image.base64- Base64 encoded string (for web display)image.mediaType- MIME type ('image/jpeg' or 'image/png')warnings- Array of any warnings about unsupported parameters
| Model ID | Type |
|---|---|
bytedance/seedream-3.0 |
t2i |
bytedance/seedream-4.0 |
t2i |
bytedance/seedream-4.0-edit |
edit |
black-forest-labs/flux-1-schnell |
t2i |
black-forest-labs/flux-1-dev |
t2i |
black-forest-labs/flux-1-kontext-dev |
edit |
qwen/qwen-image |
t2i |
qwen/qwen-image-edit |
edit |
nano-banana-edit |
edit |
google/nano-banana-pro-edit |
edit |
pruna/p-image-t2i |
t2i |
pruna/p-image-edit |
edit |
For the full list of models, see the Runpod Public Endpoint Reference.
Supported models: pruna/p-image-t2i, pruna/p-image-edit
| Parameter | Supported Values | Notes |
|---|---|---|
aspectRatio |
1:1, 16:9, 9:16, 4:3, 3:4, 3:2, 2:3 |
Standard AI SDK parameter |
aspectRatio (t2i only) |
custom |
Requires width & height in providerOptions |
providerOptions.runpod.width / height |
256 - 1440 |
Custom dimensions (t2i only). Must be multiple of 16. |
providerOptions.runpod.images |
string[] |
Required for p-image-edit. Supports 1-5 images. |
Example: Custom Resolution (t2i)
const { image } = await generateImage({
model: runpod.imageModel('pruna/p-image-t2i'),
prompt: 'A robot',
providerOptions: {
runpod: {
aspect_ratio: 'custom',
width: 512,
height: 768,
},
},
});Supported model: google/nano-banana-pro-edit
| Parameter | Supported Values | Notes |
|---|---|---|
aspectRatio |
1:1, 16:9, 9:16, 4:3, 3:4, 3:2, 2:3, 21:9, 9:21 |
Standard AI SDK parameter |
resolution |
1k, 2k, 4k |
Output resolution quality |
output_format |
jpeg, png, webp |
Output image format |
providerOptions.runpod.images |
string[] |
Required. Input image(s) to edit. |
Most other models (Flux, Seedream, Qwen, etc.) support standard 1:1, 4:3, and 3:4 aspect ratios.
- Flux models: Support
num_inference_stepsandguidancesettings. - Edit models: Require an input image via
providerOptions.runpod.image(single) orimages(multiple).
const { image } = await generateImage({
model: runpod.imageModel('bytedance/seedream-3.0'),
prompt: 'A sunset over mountains',
size: '1328x1328',
seed: 42,
providerOptions: {
runpod: {
negative_prompt: 'blurry, low quality',
enable_safety_checker: true,
},
},
});Transform existing images using text prompts.
// Example: Transform existing image
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-kontext-dev'),
prompt: 'Transform this into a cyberpunk style with neon lights',
aspectRatio: '1:1',
providerOptions: {
runpod: {
image: 'https://example.com/input-image.jpg',
},
},
});
// Example: Using base64 encoded image
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-kontext-dev'),
prompt: 'Make this image look like a painting',
providerOptions: {
runpod: {
image: '...',
},
},
});// Example: Combine multiple images using Nano Banana edit
const { image } = await generateImage({
model: runpod.imageModel('nano-banana-edit'),
prompt:
'Combine these four images into a single realistic 3D character scene.',
// Defaults to 1:1; you can also set size: '1328x1328' or aspectRatio: '4:3'
providerOptions: {
runpod: {
images: [
'https://image.runpod.ai/uploads/0bz_xzhuLq/a2166199-5bd5-496b-b9ab-a8bae3f73bdc.jpg',
'https://image.runpod.ai/uploads/Yw86rhY6xi/2ff8435f-f416-4096-9a4d-2f8c838b2d53.jpg',
'https://image.runpod.ai/uploads/bpCCX9zLY8/3bc27605-6f9a-40ad-83e9-c29bed45fed9.jpg',
'https://image.runpod.ai/uploads/LPHEY6pyHp/f950ceb8-fafa-4800-bdf1-fd3fd684d843.jpg',
],
enable_safety_checker: true,
},
},
});Check out our examples for more code snippets on how to use all the different models.
// Full control over generation parameters
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-dev'),
prompt: 'A majestic dragon breathing fire in a medieval castle',
size: '1328x1328',
seed: 42, // For reproducible results
providerOptions: {
runpod: {
negative_prompt: 'blurry, low quality, distorted, ugly, bad anatomy',
enable_safety_checker: true,
num_inference_steps: 50, // Higher quality (default: 28)
guidance: 3.5, // Stronger prompt adherence (default: 2)
output_format: 'png', // High quality format
// Polling settings for long generations
maxPollAttempts: 30,
pollIntervalMillis: 4000,
},
},
});
// Fast generation with minimal steps
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-schnell'),
prompt: 'A simple red apple',
aspectRatio: '1:1',
providerOptions: {
runpod: {
num_inference_steps: 2, // Even faster (default: 4)
guidance: 10, // Higher guidance for simple prompts
output_format: 'jpg', // Smaller file size
},
},
});Use providerOptions.runpod for model-specific parameters:
| Option | Type | Default | Description |
|---|---|---|---|
negative_prompt |
string |
"" |
What to avoid in the image |
enable_safety_checker |
boolean |
true |
Content safety filtering |
disable_safety_checker |
boolean |
false |
Disable safety checker (Pruna) |
image |
string |
- | Input image URL or base64 (Flux Kontext) |
images |
string[] |
- | Multiple input images (edit models) |
resolution |
string |
"1k" |
Output resolution: 1k, 2k, 4k (Nano Banana Pro) |
width / height |
number |
- | Custom dimensions (Pruna t2i, 256-1440) |
num_inference_steps |
number |
Auto | Denoising steps |
guidance |
number |
Auto | Prompt adherence strength |
output_format |
string |
"png" |
Output format: png, jpg, jpeg, webp |
maxPollAttempts |
number |
60 |
Max polling attempts |
pollIntervalMillis |
number |
5000 |
Polling interval (ms) |
You can generate speech using the AI SDK's experimental_generateSpeech and a Runpod speech model created via runpod.speechModel() (or the shorthand runpod.speech()).
import { runpod } from '@runpod/ai-sdk-provider';
import { experimental_generateSpeech as generateSpeech } from 'ai';
const result = await generateSpeech({
model: runpod.speechModel('resembleai/chatterbox-turbo'),
text: 'Hello, this is Chatterbox Turbo running on Runpod.',
voice: 'lucy',
});
// Save to filesystem:
import { writeFileSync } from 'fs';
writeFileSync('speech.wav', result.audio.uint8Array);Returns:
result.audio.uint8Array- Binary audio data (efficient for processing/saving)result.audio.base64- Base64 encoded audio (useful for web embedding)result.audio.mediaType- MIME type (e.g.audio/wav)result.audio.format- Format (e.g.wav)result.warnings- Array of any warnings about unsupported parametersresult.providerMetadata.runpod.audioUrl- Public URL to the generated audioresult.providerMetadata.runpod.cost- Cost information (if available)
Supported model: resembleai/chatterbox-turbo
| Parameter | Type | Default | Description |
|---|---|---|---|
text |
string |
- | Required. The text to convert to speech. |
voice |
string |
"lucy" |
Built-in voice name (see list below). |
Use providerOptions.runpod for model-specific parameters:
| Option | Type | Default | Description |
|---|---|---|---|
voice_url |
string |
- | URL to audio file (5–10s) for voice cloning |
voiceUrl |
string |
- | Alias for voice_url |
Note: If
voice_urlis provided, the built-invoiceis ignored.Note: This speech endpoint currently returns WAV only;
outputFormatis ignored.
voice selects one of the built-in voices (default: lucy):
[
'aaron',
'abigail',
'anaya',
'andy',
'archer',
'brian',
'chloe',
'dylan',
'emmanuel',
'ethan',
'evelyn',
'gavin',
'gordon',
'ivan',
'laura',
'lucy',
'madison',
'marisol',
'meera',
'walter',
];You can provide a voice_url (5–10s audio) through providerOptions.runpod:
const result = await generateSpeech({
model: runpod.speech('resembleai/chatterbox-turbo'),
text: 'Hello!',
providerOptions: {
runpod: {
voice_url: 'https://example.com/voice.wav',
},
},
});Runpod is the foundation for developers to build, deploy, and scale custom AI systems.
Beyond some of the public endpoints you've seen above (+ more generative media APIs), Runpod offers private serverless endpoints / pods / instant clusters, so that you can train, fine-tune or run any open-source or private model on your terms.