-
Notifications
You must be signed in to change notification settings - Fork 948
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #261 from psv4/add-tsit5
Adding tsit5 as a solver
- Loading branch information
Showing
3 changed files
with
85 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
import torch | ||
from .rk_common import _ButcherTableau, RKAdaptiveStepsizeODESolver | ||
# https://github.com/SciML/OrdinaryDiffEq.jl/blob/master/lib/OrdinaryDiffEqTsit5/src/tsit_tableaus.jl | ||
# https://github.com/patrick-kidger/diffrax/blob/14baa1edddcacf27c0483962b3c9cf2e86e6e5b6/diffrax/_solver/tsit5.py#L158 | ||
|
||
_TSITOURAS_TABLEAU = _ButcherTableau( | ||
alpha=torch.tensor([ | ||
161 / 1000, | ||
327 / 1000, | ||
9 / 10, | ||
.9800255409045096857298102862870245954942137979563024768854764293221195950761080302604, | ||
1, | ||
1 | ||
], dtype=torch.float64), | ||
beta=[ | ||
torch.tensor([161 / 1000], dtype=torch.float64), | ||
torch.tensor([ | ||
-.8480655492356988544426874250230774675121177393430391537369234245294192976164141156943e-2, | ||
.3354806554923569885444268742502307746751211773934303915373692342452941929761641411569 | ||
], dtype=torch.float64), | ||
torch.tensor([ | ||
2.897153057105493432130432594192938764924887287701866490314866693455023795137503079289, | ||
-6.359448489975074843148159912383825625952700647415626703305928850207288721235210244366, | ||
4.362295432869581411017727318190886861027813359713760212991062156752264926097707165077, | ||
], dtype=torch.float64), | ||
torch.tensor([ | ||
5.325864828439256604428877920840511317836476253097040101202360397727981648835607691791, | ||
-11.74888356406282787774717033978577296188744178259862899288666928009020615663593781589, | ||
7.495539342889836208304604784564358155658679161518186721010132816213648793440552049753, | ||
-.9249506636175524925650207933207191611349983406029535244034750452930469056411389539635e-1 | ||
], dtype=torch.float64), | ||
torch.tensor([ | ||
5.861455442946420028659251486982647890394337666164814434818157239052507339770711679748, | ||
-12.92096931784710929170611868178335939541780751955743459166312250439928519268343184452, | ||
8.159367898576158643180400794539253485181918321135053305748355423955009222648673734986, | ||
-.7158497328140099722453054252582973869127213147363544882721139659546372402303777878835e-1, | ||
-.2826905039406838290900305721271224146717633626879770007617876201276764571291579142206e-1 | ||
], dtype=torch.float64), | ||
torch.tensor([ | ||
.9646076681806522951816731316512876333711995238157997181903319145764851595234062815396e-1, | ||
1 / 100, | ||
.4798896504144995747752495322905965199130404621990332488332634944254542060153074523509, | ||
1.379008574103741893192274821856872770756462643091360525934940067397245698027561293331, | ||
-3.290069515436080679901047585711363850115683290894936158531296799594813811049925401677, | ||
2.324710524099773982415355918398765796109060233222962411944060046314465391054716027841 | ||
], dtype=torch.float64), | ||
], | ||
c_sol=torch.tensor([ | ||
.9468075576583945807478876255758922856117527357724631226139574065785592789071067303271e-1, | ||
.9183565540343253096776363936645313759813746240984095238905939532922955247253608687270e-2, | ||
.4877705284247615707855642599631228241516691959761363774365216240304071651579571959813, | ||
1.234297566930478985655109673884237654035539930748192848315425833500484878378061439761, | ||
-2.707712349983525454881109975059321670689605166938197378763992255714444407154902012702, | ||
1.866628418170587035753719399566211498666255505244122593996591602841258328965767580089, | ||
1 / 66 | ||
], dtype=torch.float64), | ||
c_error=torch.tensor([ | ||
-1.780011052225771443378550607539534775944678804333659557637450799792588061629796e-03, | ||
-8.164344596567469032236360633546862401862537590159047610940604670770447527463931e-04, | ||
7.880878010261996010314727672526304238628733777103128603258129604952959142646516e-03, | ||
-1.44711007173262907537165147972635116720922712343167677619514233896760819649515e-01, | ||
5.823571654525552250199376106520421794260781239567387797673045438803694038950012e-01, | ||
-4.580821059291869466616365188325542974428047279788398179474684434732070620889539e-01, | ||
1 / 66 | ||
], dtype=torch.float64), | ||
) | ||
|
||
x = 1 / 2 | ||
TSIT_C_MID = torch.tensor([ | ||
-1.0530884977290216*x*(x-1.329989018975412)*(x*x-1.4364028541716351*x+0.7139816917074209), | ||
0.1017*x*x*(x*x-2.1966568338249754*x+1.2949852507374631), | ||
2.490627285651252793*x*x*(x*x-2.38535645472061657*x+1.57803468208092486), | ||
-16.54810288924490272*(x-1.21712927295533244)*(x-0.61620406037800089)*x*x, | ||
47.37952196281928122*(x-1.203071208372362603)*(x-0.658047292653547382)*x*x, | ||
-34.87065786149660974*(x-1.2)*(x-2/3)*x*x, | ||
2.5*(x-1)*(x-0.6)*x*x | ||
], dtype=torch.float64) | ||
|
||
class Tsit5Solver(RKAdaptiveStepsizeODESolver): | ||
order = 5 | ||
tableau = _TSITOURAS_TABLEAU | ||
mid = TSIT_C_MID |