Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 2 additions & 6 deletions functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,9 @@ def forward(ctx, inputs, codebook):
embedding_size = codebook.size(1)
inputs_size = inputs.size()
inputs_flatten = inputs.view(-1, embedding_size)

codebook_sqr = torch.sum(codebook ** 2, dim=1)
inputs_sqr = torch.sum(inputs_flatten ** 2, dim=1, keepdim=True)


# Compute the distances to the codebook
distances = torch.addmm(codebook_sqr + inputs_sqr,
inputs_flatten, codebook.t(), alpha=-2.0, beta=1.0)
distances = torch.cdist(inputs_flatten, codebook, 2)

_, indices_flatten = torch.min(distances, dim=1)
indices = indices_flatten.view(*inputs_size[:-1])
Expand Down
11 changes: 5 additions & 6 deletions vqvae.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ def main(args):
if args.dataset in ['mnist', 'fashion-mnist', 'cifar10']:
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
transforms.Normalize((0.5), (0.5))
])
if args.dataset == 'mnist':
# Define the train & test datasets
Expand Down Expand Up @@ -150,9 +150,9 @@ def main(args):
parser = argparse.ArgumentParser(description='VQ-VAE')

# General
parser.add_argument('--data-folder', type=str,
parser.add_argument('--data-folder', type=str, default='./data',
help='name of the data folder')
parser.add_argument('--dataset', type=str,
parser.add_argument('--dataset', type=str, default='mnist',
help='name of the dataset (mnist, fashion-mnist, cifar10, miniimagenet)')

# Latent space
Expand All @@ -176,7 +176,7 @@ def main(args):
help='name of the output folder (default: vqvae)')
parser.add_argument('--num-workers', type=int, default=mp.cpu_count() - 1,
help='number of workers for trajectories sampling (default: {0})'.format(mp.cpu_count() - 1))
parser.add_argument('--device', type=str, default='cpu',
parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu',
help='set the device (cpu or cuda, default: cpu)')

args = parser.parse_args()
Expand All @@ -187,8 +187,7 @@ def main(args):
if not os.path.exists('./models'):
os.makedirs('./models')
# Device
args.device = torch.device(args.device
if torch.cuda.is_available() else 'cpu')
args.device = torch.device(args.device)
# Slurm
if 'SLURM_JOB_ID' in os.environ:
args.output_folder += '-{0}'.format(os.environ['SLURM_JOB_ID'])
Expand Down