Skip to content

richstu/copydataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

copydataset

Tools to copy datasets. Focused on copying nanoaods to ucsb.

Setup

Run the below command to setup the git repository.

git clone --recurse-submodules [email protected]:richstu/copydataset.git

If did not do recurse-submodules

git submodule update --init --remote --recursive

Run the below command to setup the environment.

source set_env.sh

(Short) Steps for copying datasets

Note: Need to make json files using cc7, because dasgoclient doesn't work well with SL6.
Link one of the meta_* directories to meta.
Make jsons directory or Link the matching json_* directory to jsons to use the MC selections that was done before.
Make a results directory. Edit the files in the meta directory.
In the mc_dataset_* files, one can also assign a SIGNAL_NAME_DIR to a dataset, which is used to be the directory name for the files.
Run the below commands to get information about the datasets to download.

make_datasets_jsons.py
filter_datasets_jsons.py
select_multiple_datasets_jsons.py
write_datasets.py
(optional) write_datasets.py -t mc -y 2016 -op 2016_
(optional) write_datasets.py -t data -y 2016 -op 2016_
make_dataset_files_jsons.py
(optional) make_disk_files_jsons.py
(optional) write_dataset_files.py -t mc -s 'dataset_year="2016"' -op 2016_mc_
(optional) write_dataset_files.py -t data -s 'dataset_year="2016"' -op 2016_data_
# Need to split by year due to writing into different folders by year
# If make_disk_files_jsons.py is ran, convert_dataset_files_to_cl.py uses results and and does not download files that are on disk.
convert_dataset_files_to_cl.py mc /net/cms11/cms11r0/pico ./results/cl_mc_dataset_files_2016.py -s 'dataset_year="2016"'
convert_dataset_files_to_cl.py data /net/cms11/cms11r0/pico ./results/cl_data_dataset_files_2016.py -s 'dataset_year="2016"'
convert_dataset_files_to_cl.py SIGNAL_NAME_DIR /net/cms11/cms11r0/pico ./results/cl_SIGNAL_NAME_DIR_dataset_files.py_2016 -s 'dataset_year="2016"'

Now we are ready to submit jobs. But before submitting the jobs, do voms-proxy-init

voms-proxy-init --voms cms --out voms_proxy.txt -valid 172:0

Make sure you have write permissions to the target folder. Ex) /net/cms11/cms11r0/pico/NanoAODv9/nano/20XX/mc, ... Also make sure you have a logs folder. Run the below commands to submit to the ucsb job system. screen source set_env.sh

mkdir logs

convert_cl_to_jobs_info.py ./results/cl_mc_dataset_files_2016.py ./jsons/mc_jobs_info_2016.json
auto_submit_jobs.py ./jsons/mc_jobs_info_2016.json -n cms11 -r 64 -c copy_aods_check_entries.py

convert_cl_to_jobs_info.py ./results/cl_data_dataset_files_2016.py ./jsons/data_jobs_info_2016.json
auto_submit_jobs.py ./jsons/data_jobs_info_2016.json -n cms11 -r 64 -c copy_aods_check_entries.py

convert_cl_to_jobs_info.py ./results/cl_SIGNAL_NAME_dataset_files_2016.py ./jsons/SIGNAL_NAME_jobs_info_2016.json
auto_submit_jobs.py ./jsons/SIGNAL_NAME_jobs_info_2016.json -n cms11 -r 64 -c copy_aods_check_entries.py

convert_cls_to_jobs_info.py -c ./results/cl_mc_dataset_files_2016APV.py ./results/cl_mc_dataset_files_2017.py ./results/cl_mc_dataset_files_2018.py -j  ./jsons/mc_jobs_info_2016APV20172018.json
auto_submit_jobs.py ./jsons/mc_jobs_info_2016APV20172018.json -n cms11 -r 64 -m 20 -c copy_aods_check_entries.py

In case checking jobs needs to be redone

check_jobs.py jsons/auto_mc_jobs_info.json -o jsons/check_auto_mc_jobs_info.json -c copy_aods_check_entries.py

Check reason of failed jobs and set status submit again for failed jobs.

select_resubmit_jobs.py jsons/auto_mc_jobs_info.json -c copy_aods_check_entries.py
select_resubmit_jobs.py jsons/auto_data_jobs_info.json -c copy_aods_check_entries.py
select_resubmit_jobs.py jsons/auto_SIGNAL_NAME_jobs_info.json -c copy_aods_check_entries.py

Resubmit jobs if needed.

auto_submit_jobs.py ./jsons/resubmit_auto_mc_jobs_info.json -n cms11 -r 64 -m 20 -c copy_aods_check_entries.py
auto_submit_jobs.py ./jsons/resubmit_auto_data_jobs_info.json -n cms11 -r 64 -m 20 -c copy_aods_check_entries.py
auto_submit_jobs.py ./jsons/resubmit_auto_SIGNAL_NAME_jobs_info.json -n cms11 -r 64 -m 20 -c copy_aods_check_entries.py

(Short) Case of updating the meta file.

If the meta file is updated run the below commands to update the json files and get the commands to download the additional datasets. (Does not work if the nanoaod tag name has changed. In this case, please make the datasets json file again.)

update_datasets_jsons.py
filter_datasets_jsons.py -ip updated_
select_multiple_datasets_jsons.py
write_datasets.py
(optional) write_datasets.py -t mc -y 2016 -op 2016_
(optional) write_datasets.py -t data -y 2016 -op 2016_
update_dataset_files_jsons.py
(optional) write_dataset_files.py -t mc -s "dataset_year=2016" -op mc_
(optional) write_dataset_files.py -t data -s "dataset_year=2016" -op data_
make_disk_files_jsons.py
convert_dataset_files_to_cl.py mc /mnt/hadoop/pico ./results/cl_mc_dataset_files.py -s 'dataset_year="2016"' -if updated_
convert_dataset_files_to_cl.py data /mnt/hadoop/pico ./results/cl_data_dataset_files.py -s 'dataset_year="2016"' -if updated_
convert_dataset_files_to_cl.py SIGNAL_NAME /mnt/hadoop/pico ./results/cl_SIGNAL_NAME_dataset_files.py -s 'dataset_year="2016"' -if updated_

Alternative way to download files

voms-proxy-init -voms cms -valid 168:0
source /cvmfs/cms.cern.ch/cmsset_default.sh
source /cvmfs/cms.cern.ch/rucio/setup-py3.sh
export RUCIO_ACCOUNT=jaebak
rucio download --ndownloader=1 cms:/store/...

Checking file status

crab checkfile --lfn /store/...

(Long) Steps for copying datasets

Setup meta files.

The datasets you want to download should be written in the files located in meta. For data datasets, edit meta/data_tag_meta. For mc and signal datasets, edit meta/mc_dataset_*

Get information about datasets using dasgoclient.

The below command uses the meta files to get information about the datasets.

make_datasets_jsons.py

The information is stored in json files. One can customize the input and output files using arguments, which can be seen with the argument -h.

  • Input files:
    • meta/mc_dataset_common_names
    • meta/mc_dataset_2016_names
    • meta/mc_dataset_2017_names
    • meta/mc_dataset_2018_names
    • meta/mc_tag_meta
    • meta/data_tag_meta
  • Output files:
    • jsons/mc_datasets.json
    • jsons/data_datasets.json

Filter datasets that are not used.

The below command filters some of the datasets based on the name of the dataset.

filter_datasets_jsons.py

The filtered datasets are stored in json files. One can customize the input and output files using arguments, which can be seen with the argument -h.

  • Input files:
    • meta/mc_dataset_common_names
    • meta/mc_dataset_2016_names
    • meta/mc_dataset_2017_names
    • meta/mc_dataset_2018_names
    • meta/mc_tag_meta
    • meta/data_tag_meta
    • jsons/mc_datasets.json
    • jsons/data_datasets.json
  • Output files:
    • jsons/filtered_mc_datasets.json
    • jsons/filtered_bad_pu_mc_datasets.json
    • jsons/filtered_bad_ps_weight_mc_datasets.json
    • jsons/filtered_data_datasets.json

Select datasets that have multiple options.

The below command is for selecting datasets that have multiple options.

select_multiple_datasets_jsons.py

The selected datasets are stored in json files. The reason of the selection is stored in jsons/selected_mc_multiple_selection.json. One can customize the input and output files using arguments, which can be seen with the argument -h.

  • Input files:
    • meta/mc_dataset_common_names
    • meta/mc_dataset_2016_names
    • meta/mc_dataset_2017_names
    • meta/mc_dataset_2018_names
    • meta/mc_tag_meta
    • meta/data_tag_meta
    • jsons/filtered_mc_datasets.json
    • jsons/filtered_data_datasets.json
  • Output files:
    • jsons/selected_mc_multiple_selection.json
    • jsons/selected_mc_datasets.json
    • jsons/selected_data_datasets.json

Write dataset full names to a plain text file

The below command writes the dataset full names to a text file. This step make it easy to go to the next step if the full dataset names are known.

write_datasets.py

The datasets are written to a text file. empties are datasets that are missing. bad_pu are datasets that have no other choice than to use bad pileup. bad_ps_weight are datasets that have no other choice than to use ps_weight. One can customize the input and output files using arguments, which can be seen with the argument -h.

  • Input files:
    • meta/mc_dataset_common_names
    • meta/mc_dataset_2016_names
    • meta/mc_dataset_2017_names
    • meta/mc_dataset_2018_names
    • meta/mc_tag_meta
    • meta/data_tag_meta
    • jsons/selected_mc_datasets.json
    • jsons/selected_data_datasets.json
  • Output files:
    • results/mc_dataset_paths
    • results/mc_dataset_empties
    • results/bad_pu_mc_dataset_paths
    • results/bad_ps_weight_mc_dataset_paths
    • results/data_dataset_paths
    • results/data_dataset_empties

Get file information for the datasets

The below command gets file information about the datasets using dasgoclient.

make_dataset_files_jsons.py

The dataset file information is stored in json files. One can customize the input and output files using arguments, which can be seen with the argument -h.

  • Input files:
    • results/mc_dataset_paths
    • results/data_dataset_paths
  • Output files:
    • jsons/mc_dataset_files_info.json
    • jsons/data_dataset_files_info.json

Get information of files that are on disk

The below command gets information of files that are on disk

make_disk_files_jsons.py

The file information is stored in a json file. One can customize the input and output files using arguments, which can be seen with the argument -h.

  • Input files:
  • Output files:
    • jsons/mc_disk_files.json
    • jsons/data_disk_files.json

(Optional) Write dataset files to a plain text file

The below command writes dataset file paths to a text file.

write_dataset_files.py

One can customize the input and output files using arguments, which can be seen with the argument -h.

  • Input files:
    • jsons/mc_dataset_files_info.json
    • jsons/data_dataset_files_info.json
  • Output files:
    • results/mc_dataset_files
    • results/data_dataset_files

Convert file information to commands to download files.

The below command makes a python script that prints the command lines to download the files.

convert_dataset_files_to_cl.py DATA_TYPE DOWNLOAD_DIRECTORY OUT_PYTHON_SCRIPT

DATA_TYPE can be either mc or data or the signal name. DATA_TYPE is used in setting the download folder. DATA_TYPE should also be written in mc_tag_meta. The structure of the downlaod folders will be like DOWNLOAD_DIRECTORY/AOD_TAG/nano/YEAR/DATA_TYPE, where AOD_TAG is like NanoAODv5. Can also do a sql search on the datasets to limit the files to be copied with the option -s. Below are the keys that can be used to search. For Mc: filename, path, file_events, file_size, mc_dataset_name, year, data_tier, size, files, events, lumis, mc_dir, year_tag, miniaod_tag, nanoaod_tag, For Data: filename, path, file_events, file_size, stream, year, run_group, data_tier, size, files, events, lumis, mc_dir, year_tag, miniaod_tag, nanoaod_tag, nanoaodsim_tag

  • filename: Filename of the dataset file. Ex) /store/mc/../...

  • dataset_path: Dataset name. Ex) /TTJets...

  • file_events: Number of events in the file

  • file_size: File size of the file

  • mc_dataset_name: The name of the dataset in the meta/mc_dataset_*_names

  • dataset_year: year of the dataset Ex) 2016, 2017, 2018

  • data_tier: miniaod or nanoaod

  • size: Total size of the dataset

  • events: Number of events for the dataset

  • lumis: Number of lumis for the dataset

  • mc_dir: Directory that the files will be downloaded to. Ex) mc

  • year_tag: Tag of the year. Ex) RunIIFalll17

  • miniaod_tag: Tag of the miniaod Ex) MiniAODv2

  • nanoaod_tag: Tag of the nanooad Ex) NanoAODv5 for mc and Nano1June2019 for data

  • dataset_stream: Trigger name of the data. Ex) MET

  • dataset_run_group: Ex) A

  • nanoaodsim_tag: NanoAODv5 An example of a search string would be "year=17 and mc_dir=mc"

  • Input files:

    • meta/mc_dataset_common_names
    • meta/mc_dataset_2016_names
    • meta/mc_dataset_2017_names
    • meta/mc_dataset_2018_names
    • meta/mc_tag_meta
    • meta/data_tag_meta
    • jsons/selected_mc_datasets.json
    • jsons/selected_data_datasets.json
  • Output files:

    • OUT_PYTHON_SCRIPT

Converting commands to queue_system format

The below command convert the printed commands to a queue_system format.

convert_cl_to_jobs_info.py IN_PRINT_COMMAND_SCRIPT OUT_JOB_INFO.json

IN_PRINT_COMMAND_SCRIPT should print the commands to run. OUT_JOB_INFO.json is the file which holds the information in the queue_system format

  • Input files:
    • IN_PRINT_COMMAND_SCRIPT
  • Output files:
    • OUT_JOB_INFO.json

Auto-submit the jobs

The below command submits jobs and then checks if the job should be re-submitted according to a check script.

auto_submit_jobs.py IN_JOB_INFO.json -n NODE_NAME -c CHECK_SCRIPT

IN_JOB_INFO.json is the file which holds the information in the queue_system format. An output JOB_INFO json file will be produced with the prefix of 'auto_' The CHECK_SCRIPT will receive a compressed string as a argument which holds the job_log and the job_argument. The string can be uncompressed using the queue_system.decompress_string. The check script should print [For queue_system] JOB_STATUS JOB_STATUS can be 'success', 'fail' or 'to_submit'. Look at modules/queue_system/bin/jobscript_check.py for an example.

  • Input files:
    • IN_JOB_INFO.json
  • Output files:
    • auto_OUT_JOB_INFO.json

Select jobs to resubmit between failed jobs.

The below script prints info about failed jobs and asks if one wants to resubmit.

select_resubmit_jobs.py IN_JOB_INFO.json -c CHECK_SCRIPT 

IN_JOB_INFO.json is the file which holds the information in the queue_system format. An output JOB_INFO json file will be produced with the prefix of 'resubmit_' The CHECK_SCRIPT should be the check script that was used in submitting the jobs.

  • Input files:
    • IN_JOB_INFO.json
  • Output files:
    • resubmit_OUT_JOB_INFO.json

Test

One can run cd modules/datasets/test/get_datasets;./get_datasets.sh to test the scripts. One can run cd modules/queue_system/test/datasets;./submit_datasets.sh to test the scripts.

Steps for git push with submodules.

After modifying submodule code, run the below commands to push changes.

cd SUBMODULE_DIRECTORY
git commit -am "COMMENT"
git pull origin master
git push origin HEAD:master

Example of signal

make_datasets_jsons.py -m 20200113 -o 20200113 -t mc filter_datasets_jsons.py -i ./20200113 -o ./20200113 -t mc -m ./20200113 cp jsons/selected_mc_multiple_selection.json 20200113/ select_multiple_datasets_jsons.py -t mc -i ./20200113/ -o ./20200113/ -t mc -m ./20200113 write_datasets.py -i ./20200113/ -o 20200113 -t SMS-TChiHH_unsplit -m ./20200113 make_dataset_files_jsons.py -i ./20200113 -o 20200113 -t mc convert_dataset_files_to_cl.py SMS-TChiHH_unsplit /net/cms29/cms29r0/pico ./20200113/cl_mc_dataset_files_2016.py -m 20200113 -i 20200113 -s dataset_year=2016 convert_dataset_files_to_cl.py SMS-TChiHH_unsplit /net/cms29/cms29r0/pico ./20200113/cl_mc_dataset_files_2017.py -m 20200113 -i 20200113 -s dataset_year=2017 convert_dataset_files_to_cl.py SMS-TChiHH_unsplit /net/cms29/cms29r0/pico ./20200113/cl_mc_dataset_files_2018.py -m 20200113 -i 20200113 -s dataset_year=2018 convert_cl_to_jobs_info.py ./20200113/cl_mc_dataset_files_2016.py ./20200113/mc_jobs_info_2016.json convert_cl_to_jobs_info.py ./20200113/cl_mc_dataset_files_2017.py ./20200113/mc_jobs_info_2017.json convert_cl_to_jobs_info.py ./20200113/cl_mc_dataset_files_2018.py ./20200113/mc_jobs_info_2018.json auto_submit_jobs.py ./20200113/mc_jobs_info_2016.json -n cms1 -c copy_aods_check_entries.py auto_submit_jobs.py ./20200113/mc_jobs_info_2017.json -n cms1 -c copy_aods_check_entries.py auto_submit_jobs.py ./20200113/mc_jobs_info_2018.json -n cms1 -c copy_aods_check_entries.py

Example for data

cd 20200114;cp mc_dataset_common_names data_tag_meta mc_dataset_2016_names mc_dataset_2017_names mc_dataset_2018_names mc_tag_meta ../20200326 make_datasets_jsons.py -m 20200326 -o 20200326 -t data filter_datasets_jsons.py -i ./20200326 -o ./20200326 -t data -m ./20200326 select_multiple_datasets_jsons.py -t data -i ./20200326/ -o ./20200326/ -m ./20200326 write_datasets.py -i ./20200326/ -o 20200326 -t data -m ./20200326 make_dataset_files_jsons.py -i ./20200326 -o 20200326 -t data

convert_dataset_files_to_cl.py data /net/cms29/cms29r0/pico ./20200326/cl_data_dataset_files_2016.py -m 20200326 -i 20200326 -s dataset_year=2016 convert_dataset_files_to_cl.py data /net/cms29/cms29r0/pico ./20200326/cl_data_dataset_files_2017.py -m 20200326 -i 20200326 -s dataset_year=2017 convert_dataset_files_to_cl.py data /net/cms29/cms29r0/pico ./20200326/cl_data_dataset_files_2018.py -m 20200326 -i 20200326 -s dataset_year=2018 convert_cl_to_jobs_info.py ./20200326/cl_data_dataset_files_2016.py ./20200326/data_jobs_info_2016.json convert_cl_to_jobs_info.py ./20200326/cl_data_dataset_files_2017.py ./20200326/data_jobs_info_2017.json convert_cl_to_jobs_info.py ./20200326/cl_data_dataset_files_2018.py ./20200326/data_jobs_info_2018.json auto_submit_jobs.py ./20200326/data_jobs_info_2016.json -n cms1 -c copy_aods_check_entries.py auto_submit_jobs.py ./20200326/data_jobs_info_2017.json -n cms1 -c copy_aods_check_entries.py auto_submit_jobs.py ./20200326/data_jobs_info_2018.json -n cms1 -c copy_aods_check_entries.py

Example for mc and signal

Important files: mc_dataset_common_names data_tag_meta mc_dataset_2016_names mc_dataset_2017_names mc_dataset_2018_names mc_tag_meta [20201029 is up to date for data and mc] make_datasets_jsons.py -m 20201029 -o 20201029 -t mc filter_datasets_jsons.py -i ./20201029 -o ./20201029 -t mc -m ./20201029 select_multiple_datasets_jsons.py -t mc -i ./20201029 -o ./20201029 -t mc -m ./20201029 check_same_parent.py -i ./20201029 -o ./20201029 -t mc -m ./20201029 -ip selected_ write_datasets.py -i ./20201029/ -o 20201029 -t mc -m ./20201029 -y 2016 -op NanoAODv7_higgsino_2016_ write_datasets.py -i ./20201029/ -o 20201029 -t mc -m ./20201029 -y 2017 -op NanoAODv7_higgsino_2017_ write_datasets.py -i ./20201029/ -o 20201029 -t mc -m ./20201029 -y 2018 -op NanoAODv7_higgsino_2018_ write_datasets.py -i ./20201029/ -o 20201029 -t SMS-TChiHH_2D_unsplit -m ./20201029 -op SMS-TChiHH_2D_unsplit_ make_dataset_files_jsons.py -i ./20201029 -o 20201029 -t mc make_dataset_files_jsons.py -i ./20201029 -o 20201029 -t mc -op SMS-TChiHH_2D_unsplit_ -ip SMS-TChiHH_2D_unsplit_

convert_dataset_files_to_cl.py mc /net/cms25/cms25r5/pico ./20201029/cl_mc_dataset_files_2016.py -m 20201029 -i 20201029 -s dataset_year=2016 convert_dataset_files_to_cl.py mc /net/cms25/cms25r5/pico ./20201029/cl_mc_dataset_files_2017.py -m 20201029 -i 20201029 -s dataset_year=2017 convert_dataset_files_to_cl.py mc /net/cms25/cms25r5/pico ./20201029/cl_mc_dataset_files_2018.py -m 20201029 -i 20201029 -s dataset_year=2018 convert_cl_to_jobs_info.py ./20201029/cl_mc_dataset_files_2016.py ./20201029/mc_jobs_info_2016.json convert_cl_to_jobs_info.py ./20201029/cl_mc_dataset_files_2017.py ./20201029/mc_jobs_info_2017.json convert_cl_to_jobs_info.py ./20201029/cl_mc_dataset_files_2018.py ./20201029/mc_jobs_info_2018.json auto_submit_jobs.py ./20201029/mc_jobs_info_2016.json -n cms1 -c copy_aods_check_entries.py auto_submit_jobs.py ./20201029/mc_jobs_info_2017.json -n cms1 -c copy_aods_check_entries.py auto_submit_jobs.py ./20201029/mc_jobs_info_2018.json -n cms1 -c copy_aods_check_entries.py

convert_dataset_files_to_cl.py SMS-TChiHH_2D_unsplit /net/cms25/cms25r5/pico ./20201029/cl_sig_dataset_files_2016.py -m 20201029 -i 20201029 -s dataset_year=2016 -if SMS-TChiHH_2D_unsplit_ convert_dataset_files_to_cl.py SMS-TChiHH_2D_unsplit /net/cms25/cms25r5/pico ./20201029/cl_sig_dataset_files_2017.py -m 20201029 -i 20201029 -s dataset_year=2017 -if SMS-TChiHH_2D_unsplit_ convert_dataset_files_to_cl.py SMS-TChiHH_2D_unsplit /net/cms25/cms25r5/pico ./20201029/cl_sig_dataset_files_2018.py -m 20201029 -i 20201029 -s dataset_year=2018 -if SMS-TChiHH_2D_unsplit_ convert_cl_to_jobs_info.py ./20201029/cl_sig_dataset_files_2016.py ./20201029/sig_jobs_info_2016.json convert_cl_to_jobs_info.py ./20201029/cl_sig_dataset_files_2017.py ./20201029/sig_jobs_info_2017.json convert_cl_to_jobs_info.py ./20201029/cl_sig_dataset_files_2018.py ./20201029/sig_jobs_info_2018.json auto_submit_jobs.py ./20201029/sig_jobs_info_2016.json -n cms1 -c copy_aods_check_entries.py auto_submit_jobs.py ./20201029/sig_jobs_info_2017.json -n cms1 -c copy_aods_check_entries.py auto_submit_jobs.py ./20201029/sig_jobs_info_2018.json -n cms1 -c copy_aods_check_entries.py

write_dataset_files.py -t mc -s "dataset_year=2016" -op NanoAODv7_higgsino_2016_mc_ write_dataset_files.py -t mc -s "dataset_year=2017" -op NanoAODv7_higgsino_2017_mc_ write_dataset_files.py -t mc -s "dataset_year=2018" -op NanoAODv7_higgsino_2018_mc_

Downloading T5qqqqZH signal

Important files: mc_dataset_common_names data_tag_meta mc_dataset_2016_names mc_dataset_2017_names mc_dataset_2018_names mc_tag_meta [meta_current is up to date for data, mc, signal] make_datasets_jsons.py -m 20210119 -o 20210119 -t mc filter_datasets_jsons.py -i ./20210119 -o ./20210119 -t mc -m ./20210119 select_multiple_datasets_jsons.py -t mc -i ./20210119 -o ./20210119 -t mc -m ./20210119 check_same_parent.py -i ./20210119 -o ./20210119 -t mc -m ./20210119 -ip filtered_ write_datasets.py -i ./20210119/ -ip filtered_ -o 20210119 -t SMS-T5qqqqZH_unsplit -m ./20210119 -op SMS-T5qqqqZH_unsplit_ make_dataset_files_jsons.py -i ./20210119 -ip filtered_ -o 20210119 -t mc -op SMS-T5qqqqZH_unsplit_ -ip SMS-T5qqqqZH_unsplit_

convert_dataset_files_to_cl.py SMS-T5qqqqZH_unsplit /net/cms24/cms24r0/pico ./20210119/cl_sig_dataset_files_2016.py -m 20210119 -i 20210119 -s dataset_year=2016 -if SMS-T5qqqqZH_unsplit_ -id filtered_ convert_dataset_files_to_cl.py SMS-T5qqqqZH_unsplit /net/cms24/cms24r0/pico ./20210119/cl_sig_dataset_files_2017.py -m 20210119 -i 20210119 -s dataset_year=2017 -if SMS-T5qqqqZH_unsplit_ -id filtered_ convert_dataset_files_to_cl.py SMS-T5qqqqZH_unsplit /net/cms24/cms24r0/pico ./20210119/cl_sig_dataset_files_2018.py -m 20210119 -i 20210119 -s dataset_year=2018 -if SMS-T5qqqqZH_unsplit_ -id filtered_ convert_cl_to_jobs_info.py ./20210119/cl_sig_dataset_files_2016.py ./20210119/sig_jobs_info_2016.json convert_cl_to_jobs_info.py ./20210119/cl_sig_dataset_files_2017.py ./20210119/sig_jobs_info_2017.json convert_cl_to_jobs_info.py ./20210119/cl_sig_dataset_files_2018.py ./20210119/sig_jobs_info_2018.json auto_submit_jobs.py ./20210119/sig_jobs_info_2016.json -n cms1 -c copy_aods_check_entries.py auto_submit_jobs.py ./20210119/sig_jobs_info_2017.json -n cms1 -c copy_aods_check_entries.py auto_submit_jobs.py ./20210119/sig_jobs_info_2018.json -n cms1 -c copy_aods_check_entries.py

About

Tools for copying cms datasets. Focused on nanoaods.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages