-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
093324d
commit 3b9599b
Showing
3 changed files
with
856 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
function [similarity,similarityMaps,weightMaps] = HaarPSI(imgRef,imgDist,preprocessWithSubsampling) | ||
%HaarPSI Computes the Haar wavelet-based perceptual similarity index of two | ||
%images. | ||
% | ||
%Please make sure that grayscale and color values are given in the [0,255] | ||
%interval! If this is not the case, the HaarPSI cannot be computed | ||
%correctly. | ||
% | ||
%Usage (optional parameters in <>-brackets): | ||
% | ||
% [similarity,<similarityMaps>,<weightMaps>] = HaarPSI(imgRef, imgDist, <preprocessWithSubsampling>); | ||
% | ||
% | ||
% | ||
%Input: | ||
% | ||
% imgRef: RGB or grayscale image with values ranging from 0 | ||
% to 255. | ||
% imgDist: RGB or grayscale image with values ranging from 0 | ||
% to 255. | ||
% preprocessWithSubsampling: <optional> If 0, the preprocssing step to acommodate for the | ||
% viewing distance in psychophysical experimentes is omitted. | ||
% | ||
% | ||
%Output: | ||
% | ||
% similarity: The Haar wavelet-based perceptual similarity index, measured | ||
% in the interval [0,1]. | ||
% similarityMaps: <optional> Maps of horizontal and vertical local similarities. | ||
% For RGB images, this variable also includes | ||
% a similarity map with respect to the two | ||
% color channesl in the YIQ space. | ||
% weightMaps: <optional> Weight maps measuring the importance of | ||
% the local similarities in similarityMaps. | ||
% | ||
% | ||
%Example: | ||
% | ||
% imgRef = double(imread('peppers.png')); | ||
% imgDist = imgRef + randi([-20,20],size(imgRef)); | ||
% imgDist = min(max(imgDist,0),255); | ||
% similarity = HaarPSI(imgRef,imgDist); | ||
% | ||
%Reference: | ||
% | ||
% R. Reisenhofer, S. Bosse, G. Kutyniok & T. Wiegand: 'A Haar Wavelet-Based Perceptual Similarity Index for Image Quality Assessment', 2017. | ||
|
||
if nargin < 3 | ||
preprocessWithSubsampling = 1; | ||
end | ||
colorImage = size(imgRef,3) == 3; | ||
|
||
imgRef = double(imgRef); | ||
imgDist = double(imgDist); | ||
|
||
%% initialization and preprocessing | ||
%constants | ||
C = 30; | ||
alpha = 4.2; | ||
%transform to YIQ colorspace | ||
if colorImage | ||
imgRefY = 0.299 * (imgRef(:,:,1)) + 0.587 * (imgRef(:,:,2)) + 0.114 * (imgRef(:,:,3)); | ||
imgDistY = 0.299 * (imgDist(:,:,1)) + 0.587 * (imgDist(:,:,2)) + 0.114 * (imgDist(:,:,3)); | ||
imgRefI = 0.596 * (imgRef(:,:,1)) - 0.274 * (imgRef(:,:,2)) - 0.322 * (imgRef(:,:,3)); | ||
imgDistI = 0.596 * (imgDist(:,:,1)) - 0.274 * (imgDist(:,:,2)) - 0.322 * (imgDist(:,:,3)); | ||
imgRefQ = 0.211 * (imgRef(:,:,1)) - 0.523 * (imgRef(:,:,2)) + 0.312 * (imgRef(:,:,3)); | ||
imgDistQ = 0.211 * (imgDist(:,:,1)) - 0.523 * (imgDist(:,:,2)) + 0.312 * (imgDist(:,:,3)); | ||
else | ||
imgRefY = double(imgRef); | ||
imgDistY = double(imgDist); | ||
end | ||
|
||
%% subsampling | ||
if preprocessWithSubsampling | ||
imgRefY = HaarPSISubsample(imgRefY); | ||
imgDistY = HaarPSISubsample(imgDistY); | ||
if colorImage | ||
imgRefQ = HaarPSISubsample(imgRefQ); | ||
imgDistQ = HaarPSISubsample(imgDistQ); | ||
imgRefI = HaarPSISubsample(imgRefI); | ||
imgDistI = HaarPSISubsample(imgDistI); | ||
end | ||
end | ||
|
||
%% pre-allocate variables | ||
if colorImage | ||
localSimilarities = zeros([size(imgRefY),3]); | ||
weights = zeros([size(imgRefY),3]); | ||
else | ||
localSimilarities = zeros([size(imgRefY),2]); | ||
weights = zeros([size(imgRefY),2]); | ||
end | ||
|
||
%% Haar wavelet decomposition | ||
nScales = 3; | ||
coeffsRefY = HaarPSIDec(imgRefY,nScales); | ||
coeffsDistY = HaarPSIDec(imgDistY,nScales); | ||
if colorImage | ||
coeffsRefQ = abs(conv2(imgRefQ,ones(2,2)/4,'same')); | ||
coeffsDistQ = abs(conv2(imgDistQ,ones(2,2)/4,'same')); | ||
coeffsRefI = abs(conv2(imgRefI,ones(2,2)/4,'same')); | ||
coeffsDistI = abs(conv2(imgDistI,ones(2,2)/4,'same')); | ||
end | ||
|
||
%% compute weights and similarity for each orientation | ||
for ori = 1:2 | ||
weights(:,:,ori) = max(abs(coeffsRefY(:,:,3 + (ori-1)*nScales)), abs(coeffsDistY(:,:,3 + (ori-1)*nScales))); | ||
coeffsRefYMag = abs(coeffsRefY(:,:,(1:2) + (ori-1)*nScales)); | ||
coeffsDistYMag = abs(coeffsDistY(:,:,(1:2) + (ori-1)*nScales)); | ||
localSimilarities(:,:,ori) = sum(((2*coeffsRefYMag.*coeffsDistYMag + C)./(coeffsRefYMag.^2 + coeffsDistYMag.^2 + C)),3)/2; | ||
end | ||
|
||
%% compute similarities for color channels | ||
if colorImage | ||
similarityI = ((2*coeffsRefI.*coeffsDistI + C) ./(coeffsRefI.^2 + coeffsDistI.^2 + C)); | ||
similarityQ = ((2*coeffsRefQ.*coeffsDistQ + C) ./(coeffsRefQ.^2 + coeffsDistQ.^2 + C)); | ||
localSimilarities(:,:,3) = ((similarityI)+(similarityQ))/2; | ||
weights(:,:,3) = (weights(:,:,1) + weights(:,:,2))/2; | ||
end | ||
|
||
%% compute final score | ||
similarity = HaarPSILogInv(sum((HaarPSILog(localSimilarities(:),alpha)).*weights(:))/sum(weights(:)),alpha)^2; | ||
|
||
%% output maps | ||
if nargout > 1 | ||
similarityMaps = localSimilarities; | ||
end | ||
if nargout > 2 | ||
weightMaps = weights; | ||
end | ||
end | ||
|
||
function coeffs = HaarPSIDec(X,nScales) | ||
coeffs = zeros([size(X),2*nScales]); | ||
for k = 1:nScales | ||
haarFilter = 2^(-k)*ones(2^k,2^k); | ||
haarFilter(1:(end/2),:) = -haarFilter(1:(end/2),:); | ||
coeffs(:,:,k) = conv2(X,haarFilter,'same'); | ||
coeffs(:,:,k + nScales) = conv2(X,haarFilter','same'); | ||
end | ||
end | ||
|
||
function imgSubsampled = HaarPSISubsample(img) | ||
imgSubsampled = conv2(img, ones(2,2)/4,'same'); | ||
imgSubsampled = imgSubsampled(1:2:end,1:2:end); | ||
end | ||
|
||
function val = HaarPSILog(x,alpha) | ||
val = 1./(1 + exp(-alpha.*(x))); | ||
end | ||
|
||
function val = HaarPSILogInv(x,alpha) | ||
val = log(x./(1-x))./alpha; | ||
end | ||
|
||
% Written by Rafael Reisenhofer | ||
% Built on 08/05/2017 | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
function [similarity,similarityMaps,weightMaps] = HaarPSIExt(imgRef,imgDist,preprocessWithSubsampling,wavelet,boundaryTreatment) | ||
%HaarPSIExt Computes the Haar wavelet-based perceptual similarity index of two | ||
%images. | ||
% | ||
%Please make sure that grayscale and color values are given in the [0,255] | ||
%interval! If this is not the case, the HaarPSI cannot be computed | ||
%correctly. | ||
% | ||
%Usage (optional parameters in <>-brackets): | ||
% | ||
% [similarity,<similarityMaps>,<weightMaps>] = HaarPSI(imgRef, imgDist, <preprocessWithSubsampling>, <wavelet>, <boundaryTreatment>); | ||
% | ||
% | ||
% | ||
%Input: | ||
% | ||
% imgRef: RGB or grayscale image with values ranging from 0 | ||
% to 255. | ||
% imgDist: RGB or grayscale image with values ranging from 0 | ||
% to 255. | ||
% preprocessWithSubsampling: <optional> If 0, the preprocssing step to acommodate for the | ||
% viewing distance in psychophysical experimentes is omitted. | ||
% wavelet: <optional> A string specifying the wavelet | ||
% used in the definition of the perceptual | ||
% simlarity measure. For a list of possible | ||
% choices, see the documentation of wfilters. | ||
% boundaryTreatment: <optional> A string or number specifying | ||
% boundary treatment. For possible choices, | ||
% see the documentation of imfilter. | ||
% | ||
% | ||
% | ||
%Output: | ||
% | ||
% similarity: The Haar wavelet-based perceptual similarity index, measured | ||
% in the interval [0,1]. | ||
% similarityMaps: <optional> Maps of horizontal and vertical local similarities. | ||
% For RGB images, this variable also includes | ||
% a similarity map with respect to the two | ||
% color channesl in the YIQ space. | ||
% weightMaps: <optional> Weight maps measuring the importance of | ||
% the local similarities in similarityMaps. | ||
% | ||
% | ||
%Example: | ||
% | ||
% imgRef = double(imread('peppers.png')); | ||
% imgDist = imgRef + randi([-20,20],size(imgRef)); | ||
% imgDist = min(max(imgDist,0),255); | ||
% similarity = HaarPSI(imgRef,imgDist); | ||
% | ||
%Reference: | ||
% | ||
% R. Reisenhofer, S. Bosse, G. Kutyniok & T. Wiegand: 'A Haar Wavelet-Based Perceptual Similarity Index for Image Quality Assessment', 2017. | ||
if nargin < 3 | ||
preprocessWithSubsampling = 1; | ||
end | ||
if nargin < 4 | ||
wavelet = 'haar'; | ||
end | ||
if nargin < 5 | ||
boundaryTreatment = 0; | ||
end | ||
colorImage = size(imgRef,3) == 3; | ||
|
||
imgRef = double(imgRef); | ||
imgDist = double(imgDist); | ||
|
||
%% initialization and preprocessing | ||
%constants | ||
C = 30; | ||
alpha = 4.2; | ||
%transform to YIQ colorspace | ||
if colorImage | ||
imgRefY = 0.299 * (imgRef(:,:,1)) + 0.587 * (imgRef(:,:,2)) + 0.114 * (imgRef(:,:,3)); | ||
imgDistY = 0.299 * (imgDist(:,:,1)) + 0.587 * (imgDist(:,:,2)) + 0.114 * (imgDist(:,:,3)); | ||
imgRefI = 0.596 * (imgRef(:,:,1)) - 0.274 * (imgRef(:,:,2)) - 0.322 * (imgRef(:,:,3)); | ||
imgDistI = 0.596 * (imgDist(:,:,1)) - 0.274 * (imgDist(:,:,2)) - 0.322 * (imgDist(:,:,3)); | ||
imgRefQ = 0.211 * (imgRef(:,:,1)) - 0.523 * (imgRef(:,:,2)) + 0.312 * (imgRef(:,:,3)); | ||
imgDistQ = 0.211 * (imgDist(:,:,1)) - 0.523 * (imgDist(:,:,2)) + 0.312 * (imgDist(:,:,3)); | ||
else | ||
imgRefY = double(imgRef); | ||
imgDistY = double(imgDist); | ||
end | ||
|
||
%% subsampling | ||
if preprocessWithSubsampling | ||
imgRefY = HaarPSISubsample(imgRefY,boundaryTreatment); | ||
imgDistY = HaarPSISubsample(imgDistY,boundaryTreatment); | ||
if colorImage | ||
imgRefQ = HaarPSISubsample(imgRefQ,boundaryTreatment); | ||
imgDistQ = HaarPSISubsample(imgDistQ,boundaryTreatment); | ||
imgRefI = HaarPSISubsample(imgRefI,boundaryTreatment); | ||
imgDistI = HaarPSISubsample(imgDistI,boundaryTreatment); | ||
end | ||
end | ||
|
||
%% pre-allocate variables | ||
if colorImage | ||
localSimilarities = zeros([size(imgRefY),3]); | ||
weights = zeros([size(imgRefY),3]); | ||
else | ||
localSimilarities = zeros([size(imgRefY),2]); | ||
weights = zeros([size(imgRefY),2]); | ||
end | ||
|
||
%% Haar wavelet decomposition | ||
nScales = 3; | ||
coeffsRefY = HaarPSIDec(imgRefY,wavelet,boundaryTreatment,nScales); | ||
coeffsDistY = HaarPSIDec(imgDistY,wavelet,boundaryTreatment,nScales); | ||
if colorImage | ||
coeffsRefQ = abs(imfilter(imgRefQ,ones(2,2)/4,'same','conv',boundaryTreatment)); | ||
coeffsDistQ = abs(imfilter(imgDistQ,ones(2,2)/4,'same','conv',boundaryTreatment)); | ||
coeffsRefI = abs(imfilter(imgRefI,ones(2,2)/4,'same','conv',boundaryTreatment)); | ||
coeffsDistI = abs(imfilter(imgDistI,ones(2,2)/4,'same','conv',boundaryTreatment)); | ||
end | ||
|
||
%% compute weights and similarity for each orientation | ||
for ori = 1:2 | ||
weights(:,:,ori) = max(abs(coeffsRefY(:,:,3 + (ori-1)*nScales)), abs(coeffsDistY(:,:,3 + (ori-1)*nScales))); | ||
coeffsRefYMag = abs(coeffsRefY(:,:,(1:2) + (ori-1)*nScales)); | ||
coeffsDistYMag = abs(coeffsDistY(:,:,(1:2) + (ori-1)*nScales)); | ||
localSimilarities(:,:,ori) = sum(((2*coeffsRefYMag.*coeffsDistYMag + C)./(coeffsRefYMag.^2 + coeffsDistYMag.^2 + C)),3)/2; | ||
end | ||
|
||
%% compute similarities for color channels | ||
if colorImage | ||
similarityI = ((2*coeffsRefI.*coeffsDistI + C) ./(coeffsRefI.^2 + coeffsDistI.^2 + C)); | ||
similarityQ = ((2*coeffsRefQ.*coeffsDistQ + C) ./(coeffsRefQ.^2 + coeffsDistQ.^2 + C)); | ||
localSimilarities(:,:,3) = ((similarityI)+(similarityQ))/2; | ||
weights(:,:,3) = (weights(:,:,1) + weights(:,:,2))/2; | ||
end | ||
|
||
%% compute final score | ||
similarity = HaarPSILogInv(sum((HaarPSILog(localSimilarities(:),alpha)).*weights(:))/sum(weights(:)),alpha)^2; | ||
|
||
%% output maps | ||
if nargout > 1 | ||
similarityMaps = localSimilarities; | ||
end | ||
if nargout > 2 | ||
weightMaps = weights; | ||
end | ||
end | ||
|
||
function coeffs = HaarPSIDec(X,wavelet,boundaryTreatment,nScales) | ||
[h,g] = wfilters(wavelet); | ||
coeffs = zeros([size(X),2*nScales]); | ||
hnew = h; | ||
hnew2 = hnew; | ||
g2 = g; | ||
for k = 1:nScales | ||
waveletFilter = hnew2'*g2; | ||
coeffs(:,:,k) = imfilter(X,waveletFilter,'same','conv',boundaryTreatment); | ||
coeffs(:,:,k + nScales) = imfilter(X,waveletFilter','same','conv',boundaryTreatment); | ||
g = conv(h,dyadup(g)); | ||
hnew = conv(h,dyadup(hnew)); | ||
g2 = g((find(abs(g)>0,1,'first')):(find(abs(g)>0,1,'last'))); | ||
hnew2 = hnew((find(abs(hnew)>0,1,'first')):(find(abs(hnew)>0,1,'last'))); | ||
end | ||
end | ||
|
||
function imgSubsampled = HaarPSISubsample(img,boundaryTreatment) | ||
imgSubsampled = imfilter(img, ones(2,2)/4,'same','conv',boundaryTreatment); | ||
imgSubsampled = imgSubsampled(1:2:end,1:2:end); | ||
end | ||
|
||
function val = HaarPSILog(x,alpha) | ||
val = 1./(1 + exp(-alpha.*(x))); | ||
end | ||
|
||
function val = HaarPSILogInv(x,alpha) | ||
val = log(x./(1-x))./alpha; | ||
end | ||
|
||
% Written by Rafael Reisenhofer | ||
% Built on 08/05/2017 |
Oops, something went wrong.