Skip to content

qqiumax/AI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AI Project

This project implements various neural network architectures using PyTorch for different tasks, including classification of the Iris dataset and handwritten digit recognition using the MNIST dataset.

Project Structure

AI-Project
├── .github
│   └── workflows
│       └── run-tests.yml
├── ANN
│   └── basic_nn.py
├── CNN
│   └── cnn.py
├── RNN
│   └── rnn.py
├── GRU
│   └── gru.py
├── LSTM
│   └── lstm.py
├── requirements.txt
└── README.md

Overview

  • ANN (Artificial Neural Network): Implements a basic feedforward neural network to classify the Iris dataset.
  • CNN (Convolutional Neural Network): Implements a convolutional neural network to classify handwritten digits from the MNIST dataset.
  • RNN (Recurrent Neural Network): Implements a recurrent neural network for classifying handwritten digits from the MNIST dataset.
  • GRU (Gate Recurrent Unit Neural Network): Implements a gate recurrent unit neural network for classifying handwritten digits from the MNIST dataset.
  • LSTM (Long-Short Term Neural Network): Implements a long-short term neural network for classifying handwritten digits from the MNIST dataset.

Setup Instructions

  1. Clone the repository:

    git clone https://github.com/yourusername/AI-Project.git
    cd AI-Project
    
  2. Create a virtual environment (optional but recommended):

    python -m venv venv
    source venv/bin/activate  # On Windows use `venv\Scripts\activate`
    
  3. Install the required packages:

    pip install -r requirements.txt
    

Usage

  • To train the ANN model on the Iris dataset, run:

    python ANN/basic_nn.py
    
  • To train the CNN model on the MNIST dataset, run:

    python CNN/cnn.py
    
  • To train the RNN model on the MNIST dataset, run:

    python RNN/rnn.py
    
  • To train the GRU model on the MNIST dataset, run:

    python GRU/gru.py
    
  • To train the LSTM model on the MNIST dataset, run:

    python LSTM/lstm.py
    

License

This project is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License License.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages