This project implements various neural network architectures using PyTorch for different tasks, including classification of the Iris dataset and handwritten digit recognition using the MNIST dataset.
AI-Project
├── .github
│ └── workflows
│ └── run-tests.yml
├── ANN
│ └── basic_nn.py
├── CNN
│ └── cnn.py
├── RNN
│ └── rnn.py
├── GRU
│ └── gru.py
├── LSTM
│ └── lstm.py
├── requirements.txt
└── README.md
- ANN (Artificial Neural Network): Implements a basic feedforward neural network to classify the Iris dataset.
- CNN (Convolutional Neural Network): Implements a convolutional neural network to classify handwritten digits from the MNIST dataset.
- RNN (Recurrent Neural Network): Implements a recurrent neural network for classifying handwritten digits from the MNIST dataset.
- GRU (Gate Recurrent Unit Neural Network): Implements a gate recurrent unit neural network for classifying handwritten digits from the MNIST dataset.
- LSTM (Long-Short Term Neural Network): Implements a long-short term neural network for classifying handwritten digits from the MNIST dataset.
-
Clone the repository:
git clone https://github.com/yourusername/AI-Project.git cd AI-Project
-
Create a virtual environment (optional but recommended):
python -m venv venv source venv/bin/activate # On Windows use `venv\Scripts\activate`
-
Install the required packages:
pip install -r requirements.txt
-
To train the ANN model on the Iris dataset, run:
python ANN/basic_nn.py
-
To train the CNN model on the MNIST dataset, run:
python CNN/cnn.py
-
To train the RNN model on the MNIST dataset, run:
python RNN/rnn.py
-
To train the GRU model on the MNIST dataset, run:
python GRU/gru.py
-
To train the LSTM model on the MNIST dataset, run:
python LSTM/lstm.py
This project is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License License.