Skip to content

Add Mistral Getting Started #34

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
169 changes: 169 additions & 0 deletions mistral-embed-getting-started/mistral_qdrant_getting_started.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"!pip install qdrant-client mistralai -qq"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from mistralai.client import MistralClient\n",
"from qdrant_client import QdrantClient\n",
"from qdrant_client.http.models import PointStruct, VectorParams, Distance\n",
"collection_name = \"example_collection\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"MISTRAL_API_KEY = \"your_mistral_api_key\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"search_client = QdrantClient(\":memory:\")\n",
"mistral_client = MistralClient(api_key=MISTRAL_API_KEY)\n",
"texts = [\n",
" \"Qdrant is the best vector search engine!\",\n",
" \"Loved by Enterprises and everyone building for low latency, high performance, and scale.\",\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"result = mistral_client.embeddings(\n",
" model=\"mistral-embed\",\n",
" input=texts,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1024"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(result.data[0].embedding)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"points = [\n",
" PointStruct(\n",
" id=idx,\n",
" vector=response.embedding,\n",
" payload={\"text\": text},\n",
" )\n",
" for idx, (response, text) in enumerate(zip(result.data, texts))\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"UpdateResult(operation_id=0, status=<UpdateStatus.COMPLETED: 'completed'>)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"search_client.create_collection(collection_name, vectors_config=\n",
" VectorParams(\n",
" size=1024,\n",
" distance=Distance.COSINE,\n",
" )\n",
")\n",
"search_client.upsert(collection_name, points)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[ScoredPoint(id=0, version=0, score=0.7706972129206147, payload={'text': 'Qdrant is the best vector search engine!'}, vector=None, shard_key=None),\n",
" ScoredPoint(id=1, version=0, score=0.6887654944454833, payload={'text': 'Loved by Enterprises and everyone building for low latency, high performance, and scale.'}, vector=None, shard_key=None)]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"search_client.search(\n",
" collection_name=collection_name,\n",
" query_vector=mistral_client.embeddings(\n",
" model=\"mistral-embed\", input=[\"What is the best to use for vector search scaling?\"]\n",
" ).data[0].embedding,\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "examples",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}