-
Notifications
You must be signed in to change notification settings - Fork 155
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
323 additions
and
0 deletions.
There are no files selected for viewing
323 changes: 323 additions & 0 deletions
323
06_CartPole-reinforcement-learning_PER_D3QN_CNN/Cartpole_PER_D3QN_CNN_TF2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,323 @@ | ||
# Tutorial by www.pylessons.com | ||
# Tutorial written for - Tensorflow 2.3.1 | ||
|
||
import os | ||
import random | ||
import gym | ||
import pylab | ||
import numpy as np | ||
from collections import deque | ||
from tensorflow.keras.models import Model, load_model | ||
from tensorflow.keras.layers import Input, Dense, Lambda, Add, Conv2D, Flatten | ||
from tensorflow.keras.optimizers import Adam, RMSprop | ||
from tensorflow.keras import backend as K | ||
from PER import * | ||
import cv2 | ||
|
||
def OurModel(input_shape, action_space, dueling): | ||
X_input = Input(input_shape) | ||
X = X_input | ||
|
||
X = Conv2D(64, 5, strides=(3, 3),padding="valid", input_shape=input_shape, activation="relu", data_format="channels_first")(X) | ||
X = Conv2D(64, 4, strides=(2, 2),padding="valid", activation="relu", data_format="channels_first")(X) | ||
X = Conv2D(64, 3, strides=(1, 1),padding="valid", activation="relu", data_format="channels_first")(X) | ||
X = Flatten()(X) | ||
# 'Dense' is the basic form of a neural network layer | ||
# Input Layer of state size(4) and Hidden Layer with 512 nodes | ||
X = Dense(512, activation="relu", kernel_initializer='he_uniform')(X) | ||
|
||
# Hidden layer with 256 nodes | ||
X = Dense(256, activation="relu", kernel_initializer='he_uniform')(X) | ||
|
||
# Hidden layer with 64 nodes | ||
X = Dense(64, activation="relu", kernel_initializer='he_uniform')(X) | ||
|
||
if dueling: | ||
state_value = Dense(1, kernel_initializer='he_uniform')(X) | ||
state_value = Lambda(lambda s: K.expand_dims(s[:, 0], -1), output_shape=(action_space,))(state_value) | ||
|
||
action_advantage = Dense(action_space, kernel_initializer='he_uniform')(X) | ||
action_advantage = Lambda(lambda a: a[:, :] - K.mean(a[:, :], keepdims=True), output_shape=(action_space,))(action_advantage) | ||
|
||
X = Add()([state_value, action_advantage]) | ||
else: | ||
# Output Layer with # of actions: 2 nodes (left, right) | ||
X = Dense(action_space, activation="linear", kernel_initializer='he_uniform')(X) | ||
|
||
model = Model(inputs = X_input, outputs = X) | ||
model.compile(loss="mean_squared_error", optimizer=RMSprop(lr=0.00025, rho=0.95, epsilon=0.01), metrics=["accuracy"]) | ||
|
||
model.summary() | ||
return model | ||
|
||
class DQNAgent: | ||
def __init__(self, env_name): | ||
self.env_name = env_name | ||
self.env = gym.make(env_name) | ||
self.env.seed(0) | ||
# by default, CartPole-v1 has max episode steps = 500 | ||
# we can use this to experiment beyond 500 | ||
self.env._max_episode_steps = 4000 | ||
self.state_size = self.env.observation_space.shape[0] | ||
self.action_size = self.env.action_space.n | ||
self.EPISODES = 1000 | ||
|
||
# Instantiate memory | ||
memory_size = 10000 | ||
self.MEMORY = Memory(memory_size) | ||
self.memory = deque(maxlen=2000) | ||
|
||
self.gamma = 0.95 # discount rate | ||
|
||
# EXPLORATION HYPERPARAMETERS for epsilon and epsilon greedy strategy | ||
self.epsilon = 1.0 # exploration probability at start | ||
self.epsilon_min = 0.01 # minimum exploration probability | ||
self.epsilon_decay = 0.0005 # exponential decay rate for exploration prob | ||
|
||
self.batch_size = 32 | ||
|
||
# defining model parameters | ||
self.ddqn = True # use doudle deep q network | ||
self.Soft_Update = False # use soft parameter update | ||
self.dueling = True # use dealing netowrk | ||
self.epsilon_greedy = False # use epsilon greedy strategy | ||
self.USE_PER = True # use priority experienced replay | ||
|
||
self.TAU = 0.1 # target network soft update hyperparameter | ||
|
||
self.Save_Path = 'Models' | ||
if not os.path.exists(self.Save_Path): os.makedirs(self.Save_Path) | ||
self.scores, self.episodes, self.average = [], [], [] | ||
|
||
self.Model_name = os.path.join(self.Save_Path, self.env_name+"_PER_D3QN_CNN.h5") | ||
|
||
self.ROWS = 160 | ||
self.COLS = 240 | ||
self.REM_STEP = 4 | ||
|
||
self.image_memory = np.zeros((self.REM_STEP, self.ROWS, self.COLS)) | ||
self.state_size = (self.REM_STEP, self.ROWS, self.COLS) | ||
|
||
# create main model and target model | ||
self.model = OurModel(input_shape=self.state_size, action_space = self.action_size, dueling = self.dueling) | ||
self.target_model = OurModel(input_shape=self.state_size, action_space = self.action_size, dueling = self.dueling) | ||
|
||
# after some time interval update the target model to be same with model | ||
def update_target_model(self): | ||
if not self.Soft_Update and self.ddqn: | ||
self.target_model.set_weights(self.model.get_weights()) | ||
return | ||
if self.Soft_Update and self.ddqn: | ||
q_model_theta = self.model.get_weights() | ||
target_model_theta = self.target_model.get_weights() | ||
counter = 0 | ||
for q_weight, target_weight in zip(q_model_theta, target_model_theta): | ||
target_weight = target_weight * (1-self.TAU) + q_weight * self.TAU | ||
target_model_theta[counter] = target_weight | ||
counter += 1 | ||
self.target_model.set_weights(target_model_theta) | ||
|
||
def remember(self, state, action, reward, next_state, done): | ||
experience = state, action, reward, next_state, done | ||
if self.USE_PER: | ||
self.MEMORY.store(experience) | ||
else: | ||
self.memory.append((experience)) | ||
|
||
def act(self, state, decay_step): | ||
# EPSILON GREEDY STRATEGY | ||
if self.epsilon_greedy: | ||
# Here we'll use an improved version of our epsilon greedy strategy for Q-learning | ||
explore_probability = self.epsilon_min + (self.epsilon - self.epsilon_min) * np.exp(-self.epsilon_decay * decay_step) | ||
# OLD EPSILON STRATEGY | ||
else: | ||
if self.epsilon > self.epsilon_min: | ||
self.epsilon *= (1-self.epsilon_decay) | ||
explore_probability = self.epsilon | ||
|
||
if explore_probability > np.random.rand(): | ||
# Make a random action (exploration) | ||
return random.randrange(self.action_size), explore_probability | ||
else: | ||
# Get action from Q-network (exploitation) | ||
# Estimate the Qs values state | ||
# Take the biggest Q value (= the best action) | ||
return np.argmax(self.model.predict(state)), explore_probability | ||
|
||
def replay(self): | ||
if self.USE_PER: | ||
# Sample minibatch from the PER memory | ||
tree_idx, minibatch = self.MEMORY.sample(self.batch_size) | ||
else: | ||
# Randomly sample minibatch from the deque memory | ||
minibatch = random.sample(self.memory, min(len(self.memory), self.batch_size)) | ||
|
||
state = np.zeros((self.batch_size,) + self.state_size) | ||
next_state = np.zeros((self.batch_size,) + self.state_size) | ||
action, reward, done = [], [], [] | ||
|
||
# do this before prediction | ||
# for speedup, this could be done on the tensor level | ||
# but easier to understand using a loop | ||
for i in range(len(minibatch)): | ||
state[i] = minibatch[i][0] | ||
action.append(minibatch[i][1]) | ||
reward.append(minibatch[i][2]) | ||
next_state[i] = minibatch[i][3] | ||
done.append(minibatch[i][4]) | ||
|
||
# do batch prediction to save speed | ||
# predict Q-values for starting state using the main network | ||
target = self.model.predict(state) | ||
target_old = np.array(target) | ||
# predict best action in ending state using the main network | ||
target_next = self.model.predict(next_state) | ||
# predict Q-values for ending state using the target network | ||
target_val = self.target_model.predict(next_state) | ||
|
||
for i in range(len(minibatch)): | ||
# correction on the Q value for the action used | ||
if done[i]: | ||
target[i][action[i]] = reward[i] | ||
else: | ||
# the key point of Double DQN | ||
# selection of action is from model | ||
# update is from target model | ||
if self.ddqn: # Double - DQN | ||
# current Q Network selects the action | ||
# a'_max = argmax_a' Q(s', a') | ||
a = np.argmax(target_next[i]) | ||
# target Q Network evaluates the action | ||
# Q_max = Q_target(s', a'_max) | ||
target[i][action[i]] = reward[i] + self.gamma * (target_val[i][a]) | ||
else: # Standard - DQN | ||
# DQN chooses the max Q value among next actions | ||
# selection and evaluation of action is on the target Q Network | ||
# Q_max = max_a' Q_target(s', a') | ||
target[i][action[i]] = reward[i] + self.gamma * (np.amax(target_next[i])) | ||
|
||
if self.USE_PER: | ||
indices = np.arange(self.batch_size, dtype=np.int32) | ||
absolute_errors = np.abs(target_old[indices, np.array(action)]-target[indices, np.array(action)]) | ||
# Update priority | ||
self.MEMORY.batch_update(tree_idx, absolute_errors) | ||
|
||
# Train the Neural Network with batches | ||
self.model.fit(state, target, batch_size=self.batch_size, verbose=0) | ||
|
||
def load(self, name): | ||
self.model = load_model(name) | ||
|
||
def save(self, name): | ||
self.model.save(name) | ||
|
||
pylab.figure(figsize=(18, 9)) | ||
def PlotModel(self, score, episode): | ||
self.scores.append(score) | ||
self.episodes.append(episode) | ||
self.average.append(sum(self.scores[-50:]) / len(self.scores[-50:])) | ||
pylab.plot(self.episodes, self.average, 'r') | ||
pylab.plot(self.episodes, self.scores, 'b') | ||
pylab.ylabel('Score', fontsize=18) | ||
pylab.xlabel('Steps', fontsize=18) | ||
dqn = 'DQN_' | ||
softupdate = '' | ||
dueling = '' | ||
greedy = '' | ||
PER = '' | ||
if self.ddqn: dqn = 'DDQN_' | ||
if self.Soft_Update: softupdate = '_soft' | ||
if self.dueling: dueling = '_Dueling' | ||
if self.epsilon_greedy: greedy = '_Greedy' | ||
if self.USE_PER: PER = '_PER' | ||
try: | ||
pylab.savefig(dqn+self.env_name+softupdate+dueling+greedy+PER+"_CNN.png") | ||
except OSError: | ||
pass | ||
|
||
return str(self.average[-1])[:5] | ||
|
||
def imshow(self, image, rem_step=0): | ||
cv2.imshow("cartpole"+str(rem_step), image[rem_step,...]) | ||
if cv2.waitKey(25) & 0xFF == ord("q"): | ||
cv2.destroyAllWindows() | ||
return | ||
|
||
def GetImage(self): | ||
img = self.env.render(mode='rgb_array') | ||
|
||
img_rgb = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | ||
img_rgb_resized = cv2.resize(img_rgb, (self.COLS, self.ROWS), interpolation=cv2.INTER_CUBIC) | ||
img_rgb_resized[img_rgb_resized < 255] = 0 | ||
img_rgb_resized = img_rgb_resized / 255 | ||
|
||
self.image_memory = np.roll(self.image_memory, 1, axis = 0) | ||
self.image_memory[0,:,:] = img_rgb_resized | ||
|
||
#self.imshow(self.image_memory,0) | ||
|
||
return np.expand_dims(self.image_memory, axis=0) | ||
|
||
def reset(self): | ||
self.env.reset() | ||
for i in range(self.REM_STEP): | ||
state = self.GetImage() | ||
return state | ||
|
||
def step(self,action): | ||
next_state, reward, done, info = self.env.step(action) | ||
next_state = self.GetImage() | ||
return next_state, reward, done, info | ||
|
||
def run(self): | ||
decay_step = 0 | ||
for e in range(self.EPISODES): | ||
state = self.reset() | ||
done = False | ||
i = 0 | ||
while not done: | ||
decay_step += 1 | ||
action, explore_probability = self.act(state, decay_step) | ||
next_state, reward, done, _ = self.step(action) | ||
if not done or i == self.env._max_episode_steps-1: | ||
reward = reward | ||
else: | ||
reward = -100 | ||
self.remember(state, action, reward, next_state, done) | ||
state = next_state | ||
i += 1 | ||
if done: | ||
# every REM_STEP update target model | ||
if e % self.REM_STEP == 0: | ||
self.update_target_model() | ||
|
||
# every episode, plot the result | ||
average = self.PlotModel(i, e) | ||
|
||
print("episode: {}/{}, score: {}, e: {:.2}, average: {}".format(e, self.EPISODES, i, explore_probability, average)) | ||
if i == self.env._max_episode_steps: | ||
print("Saving trained model to", self.Model_name) | ||
#self.save(self.Model_name) | ||
break | ||
self.replay() | ||
self.env.close() | ||
|
||
def test(self): | ||
self.load(self.Model_name) | ||
for e in range(self.EPISODES): | ||
state = self.reset() | ||
done = False | ||
i = 0 | ||
while not done: | ||
action = np.argmax(self.model.predict(state)) | ||
next_state, reward, done, _ = env.step(action) | ||
i += 1 | ||
if done: | ||
print("episode: {}/{}, score: {}".format(e, self.EPISODES, i)) | ||
break | ||
|
||
if __name__ == "__main__": | ||
env_name = 'CartPole-v1' | ||
agent = DQNAgent(env_name) | ||
agent.run() | ||
#agent.test() |