Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
105 changes: 105 additions & 0 deletions examples/aws-agentcore/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
# Amazon Bedrock AgentCore Runtime Example

This example demonstrates how to prepare a Pipecat bot for deployment to **Amazon Bedrock AgentCore Runtime** and enable it to invoke AgentCore tools.

## Overview

This example shows the set needed to:

- Deploy your Pipecat bot to Amazon Bedrock AgentCore Runtime (which hosts and runs your bot)
- Enable your bot to invoke AgentCore tools while running in the AgentCore Runtime

The key additions to a standard Pipecat bot are the AgentCore-specific configurations and tool invocation handling that allow your bot to leverage the full AgentCore ecosystem.

## Prerequisites

- Accounts with:
- AWS
- OpenAI
- Deepgram
- Cartesia
- Daily
- Python 3.10 or higher
- `uv` package manager

## IAM Configuration

Configure your IAM user with the necessary policies for AgentCore usage. Start with these:

- `BedrockAgentCoreFullAccess`
- A new policy (maybe named `BedrockAgentCoreCLI`) configured [like this](https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/runtime-permissions.html#runtime-permissions-starter-toolkit)

You can also choose to specify more granular permissions; see [Amazon Bedrock AgentCore docs](https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/runtime-permissions.html) for more information.

To simplify the remaining steps in this README, it's a good idea to export some AWS-specific environment variables:

```bash
export AWS_SECRET_ACCESS_KEY=...
export AWS_ACCESS_KEY_ID=...
export AWS_REGION=...
```

## Agent Configuration

Configure your bot as an AgentCore agent.

```bash
agentcore configure -e bot.py
```

Follow the prompts to complete the configuration.

**IMPORTANT:** when asked if you want to use "Direct Code Deploy" or "Container", choose "Container". Today there is an incompatibility between Pipecat and "Direct Code Deploy".

> For the curious: "Direct Code Deploy" requires that all bot dependencies have an `aarch64_manylinux2014` wheel...which is unfortunately not true for `numba`.

## Deployment to AgentCore Runtime

Deploy your configured bot to Amazon Bedrock AgentCore Runtime for production hosting.

```bash
agentcore launch --env OPENAI_API_KEY=... --env DEEPGRAM_API_KEY=... --env CARTESIA_API_KEY=... # -a <agent_name> (if multiple agents configured)
```

You should see commands related to tailing logs printed to the console. Copy and save them for later use.

This is also the command you need to run after you've updated your bot code.

## Running on AgentCore Runtime

Run your bot on AgentCore Runtime.

```bash
agentcore invoke '{"roomUrl": "https://<your-domain>.daily.co/<room-name>"}' # -a <agent_name> (if multiple agents configured)
```

## Observation

Paste the log tailing command you received when deploying your bot to AgentCore Runtime. It should look something like:

```bash
# Replace with your actual command
aws logs tail /aws/bedrock-agentcore/runtimes/bot1-0uJkkT7QHC-DEFAULT --log-stream-name-prefix "2025/11/19/[runtime-logs]" --follow
```

## Running Locally

You can also run your bot locally, using either the SmallWebRTC or Daily transport.

First, copy `env.example` to `.env` and fill in the values.

Then, run the bot:

```bash
# SmallWebRTC
PIPECAT_LOCAL_DEV=1 uv run python bot.py

# Daily
PIPECAT_LOCAL_DEV=1 uv run python bot.py -t daily -d
```

> Ideally you should be able to use `agentcore launch --local`, but it doesn't currently appear to be working (even with [this workaround](https://github.com/aws/bedrock-agentcore-starter-toolkit/issues/156) applied), at least not for this project.

## Additional Resources

For a comprehensive guide to getting started with Amazon Bedrock AgentCore, including detailed setup instructions, see the [Amazon Bedrock AgentCore Developer Guide](https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/what-is-bedrock-agentcore.html).
241 changes: 241 additions & 0 deletions examples/aws-agentcore/bot.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
#
# Copyright (c) 2024–2025, Daily
#
# SPDX-License-Identifier: BSD 2-Clause License
#

import os

import aiohttp
from bedrock_agentcore import BedrockAgentCoreApp
from dotenv import load_dotenv
from loguru import logger
from pipecat.adapters.schemas.function_schema import FunctionSchema
from pipecat.adapters.schemas.tools_schema import ToolsSchema
from pipecat.audio.turn.smart_turn.base_smart_turn import SmartTurnParams
from pipecat.audio.turn.smart_turn.local_smart_turn_v3 import LocalSmartTurnAnalyzerV3
from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.audio.vad.vad_analyzer import VADParams
from pipecat.frames.frames import LLMRunFrame, TTSSpeakFrame
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.aggregators.llm_context import LLMContext
from pipecat.processors.aggregators.llm_response_universal import LLMContextAggregatorPair
from pipecat.runner.types import DailyRunnerArguments, RunnerArguments
from pipecat.runner.utils import create_transport
from pipecat.serializers.protobuf import ProtobufFrameSerializer
from pipecat.services.cartesia.tts import CartesiaTTSService
from pipecat.services.deepgram.stt import DeepgramSTTService
from pipecat.services.llm_service import FunctionCallParams
from pipecat.services.openai.llm import OpenAILLMService
from pipecat.transports.base_transport import BaseTransport, TransportParams
from pipecat.transports.daily.transport import DailyParams
from pipecat.transports.websocket.server import WebsocketServerParams, WebsocketServerTransport

app = BedrockAgentCoreApp()

load_dotenv(override=True)


async def get_public_ip():
"""Retrieve public IP from AWS metadata service or external service."""
try:
# Fallback to external service
async with aiohttp.ClientSession() as session:
async with session.get(
"https://api.ipify.org", timeout=aiohttp.ClientTimeout(total=5)
) as response:
if response.status == 200:
return await response.text()
except Exception:
pass

return None


async def fetch_weather_from_api(params: FunctionCallParams):
await params.result_callback({"conditions": "nice", "temperature": "75"})


async def fetch_restaurant_recommendation(params: FunctionCallParams):
await params.result_callback({"name": "The Golden Dragon"})


# We store functions so objects (e.g. SileroVADAnalyzer) don't get
# instantiated. The function will be called when the desired transport gets
# selected.
transport_params = {
"daily": lambda: DailyParams(
audio_in_enabled=True,
audio_out_enabled=True,
vad_analyzer=SileroVADAnalyzer(params=VADParams(stop_secs=0.2)),
turn_analyzer=LocalSmartTurnAnalyzerV3(params=SmartTurnParams()),
),
"webrtc": lambda: TransportParams(
audio_in_enabled=True,
audio_out_enabled=True,
vad_analyzer=SileroVADAnalyzer(params=VADParams(stop_secs=0.2)),
turn_analyzer=LocalSmartTurnAnalyzerV3(params=SmartTurnParams()),
),
}


async def run_bot(transport: BaseTransport, runner_args: RunnerArguments):
logger.info(f"Starting bot")

public_ip = await get_public_ip()
if public_ip:
logger.info(f"Public IP address: {public_ip}")
else:
logger.warning("Could not retrieve public IP address")

yield {"status": "initializing", "ip": public_ip}

stt = DeepgramSTTService(api_key=os.getenv("DEEPGRAM_API_KEY"))

tts = CartesiaTTSService(
api_key=os.getenv("CARTESIA_API_KEY"),
voice_id="71a7ad14-091c-4e8e-a314-022ece01c121", # British Reading Lady
)

llm = OpenAILLMService(api_key=os.getenv("OPENAI_API_KEY"))

# You can also register a function_name of None to get all functions
# sent to the same callback with an additional function_name parameter.
llm.register_function("get_current_weather", fetch_weather_from_api)
llm.register_function("get_restaurant_recommendation", fetch_restaurant_recommendation)

@llm.event_handler("on_function_calls_started")
async def on_function_calls_started(service, function_calls):
await tts.queue_frame(TTSSpeakFrame("Let me check on that."))

weather_function = FunctionSchema(
name="get_current_weather",
description="Get the current weather",
properties={
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the user's location.",
},
},
required=["location", "format"],
)
restaurant_function = FunctionSchema(
name="get_restaurant_recommendation",
description="Get a restaurant recommendation",
properties={
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
},
required=["location"],
)
tools = ToolsSchema(standard_tools=[weather_function, restaurant_function])

messages = [
{
"role": "system",
"content": "You are a helpful LLM in a WebRTC call. Your goal is to demonstrate your capabilities in a succinct way. Your output will be spoken aloud, so avoid special characters that can't easily be spoken, such as emojis or bullet points. Respond to what the user said in a creative and helpful way.",
},
]

context = LLMContext(messages, tools)
context_aggregator = LLMContextAggregatorPair(context)

# TODO: clean up. Hackily overrides transport created by bot() entrypoint...
ws_transport = WebsocketServerTransport(
# host=public_ip,
port=8080, # This is the only port we're allowed to bind to...but the problem is it's already taken in order to support the /invoke HTTP entrypoint.
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Here's the crux of the problem. Port 8080 is already being used to expose the invoke method, which starts the bot (which sets up the pipeline, etc.)

The thing to try next, which is a bit more complicated, is to make it so:

  • We don't use the default app entrypoint (@app.entrypoint) - we may have to abandon using BedrockAgentCoreApp entirely.
  • Instead, on the if __name__ == "__main__" section, we set up a WebSocket server on port 8080
  • Only when we connect we kick off the code to set up the Pipecat pipeline...
  • ...and somehow pass that already-established connection to use as the Pipecat WebSocket transport

params=WebsocketServerParams(
serializer=ProtobufFrameSerializer(),
audio_in_enabled=True,
audio_out_enabled=True,
add_wav_header=False,
vad_analyzer=SileroVADAnalyzer(),
session_timeout=60 * 3, # 3 minutes
),
)

pipeline = Pipeline(
[
# transport.input(),
ws_transport.input(),
stt,
context_aggregator.user(),
llm,
tts,
# transport.output(),
ws_transport.output(),
context_aggregator.assistant(),
]
)

task = PipelineTask(
pipeline,
params=PipelineParams(
enable_metrics=True,
enable_usage_metrics=True,
),
idle_timeout_secs=runner_args.pipeline_idle_timeout_secs,
)

@transport.event_handler("on_client_connected")
async def on_client_connected(transport, client):
logger.info(f"Client connected")
# Kick off the conversation.
await task.queue_frames([LLMRunFrame()])

@transport.event_handler("on_client_disconnected")
async def on_client_disconnected(transport, client):
logger.info(f"Client disconnected")
await task.cancel()

runner = PipelineRunner(handle_sigint=runner_args.handle_sigint)

task_id = app.add_async_task("voice_agent")

await runner.run(task)

app.complete_async_task(task_id)

yield {"status": "completed"}


async def bot(runner_args: RunnerArguments):
"""Bot entry point for running locally and on Pipecat Cloud."""
transport = await create_transport(runner_args, transport_params)
async for result in run_bot(transport, runner_args):
pass # Consume the stream


@app.entrypoint
async def agentcore_bot(payload, context):
"""Bot entry point for running on Amazon Bedrock AgentCore Runtime."""
room_url = payload.get("roomUrl")
transport = await create_transport(
DailyRunnerArguments(room_url=room_url),
transport_params,
)
async for result in run_bot(transport, RunnerArguments()):
yield result


if __name__ == "__main__":
# NOTE: ideally we shouldn't have to branch for local dev vs AgentCore, but
# local AgentCore container-based dev doesn't seem to be working, or at
# least not for this project.
if os.getenv("PIPECAT_LOCAL_DEV") == "1":
# Running locally
from pipecat.runner.run import main

main()
else:
# Running on AgentCore Runtime
app.run()
27 changes: 27 additions & 0 deletions examples/aws-agentcore/client/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# JavaScript Implementation

Basic implementation using the [Pipecat JavaScript SDK](https://docs.pipecat.ai/client/js/introduction).

## Setup

1. Run the bot server. See the [server README](../README).

2. Navigate to the `client` directory:

```bash
cd client
```

3. Install dependencies:

```bash
npm install
```

4. Run the client app:

```
npm run dev
```

5. Visit http://localhost:5173 in your browser.
Loading