Skip to content

Salamander is a non-negative matrix factorization framework for signature analysis

License

Notifications You must be signed in to change notification settings

parklab/Salamander

Folders and files

NameName
Last commit message
Last commit date

Latest commit

cb89093 · Aug 29, 2024
Oct 8, 2023
May 1, 2024
Aug 29, 2024
Apr 29, 2024
Oct 8, 2023
Oct 8, 2023
Apr 19, 2024
May 1, 2024
Oct 8, 2023
May 1, 2024
Apr 26, 2024
Aug 29, 2024
Aug 29, 2024
Apr 19, 2024
May 2, 2024

Repository files navigation

Salamander

Python versions supported License Code style

Salamander is a non-negative matrix factorization (NMF) framework for signature analysis build on top of AnnData and MuData. It implements multiple NMF algorithms, common visualizations, and can be easily customized & expanded.


Installation

PyPI:

pip install salamander-learn

Usage

The following example illustrates the basic syntax:

import anndata as ad
import salamander as sal

# initialize data
adata = ad.AnnData(...)

# NMF with Poisson noise
model = sal.models.KLNMF(n_signatures=5)
model.fit(adata)

# barplot
model.plot_signatures()

# stacked barplot
model.plot_exposures()

# signature correlation
model.plot_correlation()

# sample_correlation
model.plot_correlation(data="samples")

# dimensionality reduction of the exposures
model.plot_embeddings(method="umap")

For examples of how to customize any NMF algorithm and the plots, check out the tutorial. The following algorithms are currently available:

License

MIT

Changelog

Consult the CHANGELOG file for enhancements and fixes of each version.

About

Salamander is a non-negative matrix factorization framework for signature analysis

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages