Skip to content

This is a template for developing the OVaaS's backend.

License

Notifications You must be signed in to change notification settings

ovaas/ovaas-backend-template

Repository files navigation

OVaaS Backend Development Template

This is a template for developing a OVaaS's backend on your local dev machine. Please follow the instrunctions described below and try to have your custom backend application.

0. Prerequisites

1. Setup Development Environment

Install softwares described as prerequisites

Recommend to install latest version of each software. All softwares can be installed easily with GUI-based install wizard.

Install VSCode Extensions

  • Launch VSCode
  • Go to the Extention pane
  • Search and install the extentions below
    • Azure Functions
    • REST Client

Clone this repository and open it with VSCode

  • Launch command prompt and change directory as you want.
  • Clone this repository there by the command below
    git clone https://github.com/OVaaS/ovaas-backend-template.git
  • Launch VSCode to load the repository by the command below
    cd ovaas-backend-template
    code .

Create Python venv on VSCode

VSCode shows a dialog to ask you if venv can be automatically created so it will be easy to create it by clicking "Yes" button there. But you can create it by yourselves using the instructions below if it is not shown.

  • Launch command prompt in VSCode
  • Create venv by the command below This command will create a venv named ".venv"
    python -m venv .venv

After creating the venv, you need to choose a python interpreter to run an application on VSCode.

  • Choose Python interpreter

    Open the "Command Palette" from the "View" item on the menu bar and type "Python: Select Interpreter", then you can choose a python interpreter from the list shown there. Recommend to choose the one in the venv you just created.

  • Install required libraries

    python -m pip install --upgrade pip
    pip install -r requirements.txt

Launch a local Azure Storage as a Docker container

Now you are ready to launch some docker containers for developping. The first one is a local Azure Storage. Do it following the command below.

  • Launch a local Azure storage using the Azurite Docker image

    Windows 10

    scripts\LaunchAzurite.bat

    Linux / macOS

    sh scripts/LaunchAzurite.sh

    After the command executed, check if local Azure storage is launched by Azure Storage Explorer.

Now you are ready for running a sample application. Follow the next step.

2. Run the Human-Pose-Estimation sample

Launch a local OpenVINO Model server with a pre-trained model

  • Look at the list of all pre-trained models by the command below.

    Windows 10

    scripts\GetModelList.bat

    Linux / macOS

    sh scripts/GetModelList.sh
  • Choose one model to download and download it by the command below. The name "human-pose-estimation-0001" can be changed as you need. Windows 10

    scripts\DownloadModel.bat human-pose-estimation-0001

    Linux / macOS

    sh scripts/DownloadModel.sh human-pose-estimation-0001
  • Check if the model is downloaded in local folder. For example, above "human-pose-estimation-0001" should be here.

    PARENT_DIR/ovaas-backend-template/models/intel/human-pose-estimation-0001/FPXX
  • Copy the absolute path to the XML file and the BIN file of the pre-trained model and upload the model to the local Azure Storage by the command below.

    Windows

    python scripts\UploadModelFilesToAzureStorage.py --model_name human-pose-estimation --xml_file_path PARENT_DIR\ovaas-backend-template\models\intel\human-pose-estimation-0001\FPXX\human-pose-estimation-0001.xml --bin_file_path PARENT_DIR\ovaas-backend-template\models\intel\human-pose-estimation-0001\FPXX\human-pose-estimation-0001.bin

    Linux / macOS

    python3 scripts/UploadModelFilesToAzureStorage.py --model_name human-pose-estimation --xml_file_path PARENT_DIR/ovaas-backend-template/models/intel/human-pose-estimation-0001/FPXX/human-pose-estimation-0001.xml --bin_file_path PARENT_DIR/ovaas-backend-template/models/intel/human-pose-estimation-0001/FPXX/human-pose-estimation-0001.bin

    Here you need four parameters.

    • --model_name: The unique model name
    • --xml_file_path: The absolute path to the XML file of the pre-trained model
    • --bin_file_path: The absolute path to the BIN file of the pre-trained model
    • --connection_string: Optional. The connection string to access the local Azure Storage. You can get this on Azure Storage explorer but probably don't need to specify it. You can edit source code if any other connection string is needed.
  • Launch a local OpenVINO model server

    Windows 10

    scripts\LaunchOVMS.bat 1st-parameter 2nd-parameter 3rd-parameter
    
    #Example
    scripts\LaunchOVMS.bat human-pose-estimation 192.168.10.107 9000

    Linux / macOS

    sh scripts/LaunchOVMS.sh 1st-parameter 2nd-parameter 3rd-parameter
    
    #Example
    sh scripts/LaunchOVMS.sh human-pose-estimation 192.168.10.107 9000

    Here you need three parameters.

    • 1st-parameter: The unique model name you just named when to upload the model to the local Azure storage.
    • 2nd-parameter: The IP address assigned to your PC's ethernet adapter. Note: "localhost" and "127.0.0.1" will not work fine.
    • 3rd-parameter: The port number to communicate to a model server.

Launch an Azure functions emulater on VSCode

  • From the "Run" on the menu bar, click "Start Debugging". Then the emulater should start automatically. You will see the logs like below if it starts successfully.
    Azure Functions Core Tools
    Core Tools Version:       3.0.3442 Commit hash: 6bfab24b2743f8421475d996402c398d2fe4a9e0  (64-bit)
    Function Runtime Version: 3.0.15417.0
    
    
    Functions:
    
            HttpTriggerHumanPose: [GET,POST] http://localhost:7071/api/HttpTriggerHumanPose
    
    For detailed output, run func with --verbose flag.
    [2021-05-10T02:00:03.532Z] Worker process started and initialized.
    [2021-05-10T02:00:03.721Z] Host lock lease acquired by instance ID '000000000000000000000000F6FB3AFD'.

Run the sample application

  • Open the file called "request.http".
  • Click the "Send Request" on the top of the pane, then you can see the inference result after a few seconds on the other pane opened like the image below. Sample Inference Result

3. Develop your custom application

Follow the Step 2 to launch a new OpenVINO model server

You need to launch a new OpenVINO model server with your desired pre-trained model. To do that, follow the step 2 again and have a model server started. Note that you need to use different port number from the one used on human-pose-estiimation model server.

Create a new Azure Function in the project

  • Click the Azure button on the bar on the left of VSCode
  • Click the "Create Function" button, then you need to input information below.
    1. Choose "HTTP trigger"
    2. Type an unique function name
    3. Choose "Anounymous" as Authorization Level
  • Then you will have a new function template in the same project.

Write a new application code following sample code

Basically you can imitate the sample human-pose-estimation's init.py.

About

This is a template for developing the OVaaS's backend.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published