Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
156 changes: 156 additions & 0 deletions EDA/ishanrajsingh.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

sns.set_style("whitegrid")
plt.rcParams['figure.figsize'] = (10, 6)

df = pd.read_csv('/kaggle/input/titanic/train_and_test2.csv')

print("\n1. FIRST 5 ROWS OF THE DATASET:")
print(df.head())

print("\n2. DATASET SHAPE:")
print(f"Rows: {df.shape[0]}, Columns: {df.shape[1]}")

print("\n3. DATASET INFORMATION:")
print(df.info())

print("\n4. COLUMN NAMES:")
print(df.columns.tolist())

df.rename(columns={'2urvived': 'Survived'}, inplace=True)

zero_cols = [col for col in df.columns if 'zero' in col.lower()]
df.drop(zero_cols, axis=1, inplace=True)
print(f"\nDropped {len(zero_cols)} zero-value columns")

missing_values = df.isnull().sum()
missing_percent = (df.isnull().sum() / len(df)) * 100
missing_df = pd.DataFrame({
'Missing Count': missing_values,
'Percentage': missing_percent
})
print("\nMissing Values:")
print(missing_df[missing_df['Missing Count'] > 0])

df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)

print(f"\nCleaned dataset shape: {df.shape}")
print(f"Remaining columns: {df.columns.tolist()}")

print("\nStatistical Summary:")
print(df.describe())

sex_map = {0: 'male', 1: 'female'}
embarked_map = {0.0: 'C', 1.0: 'Q', 2.0: 'S'}

print(f"\nSurvival Rate: {df['Survived'].mean():.2%}")
print(f"\nGender Distribution (0=male, 1=female):")
print(df['Sex'].value_counts())
print(f"\nPassenger Class Distribution:")
print(df['Pclass'].value_counts().sort_index())
print(f"\nEmbarked Port Distribution (0=C, 1=Q, 2=S):")
print(df['Embarked'].value_counts().sort_index())

# Visualization 1: Survival Distribution
plt.figure(figsize=(8, 6))
survival_counts = df['Survived'].value_counts()
plt.bar(['Did Not Survive', 'Survived'], survival_counts.values, color=['#FF6B6B', '#4ECDC4'])
plt.title('Survival Distribution on Titanic', fontsize=16, fontweight='bold')
plt.ylabel('Number of Passengers', fontsize=12)
plt.xlabel('Survival Status', fontsize=12)
for i, v in enumerate(survival_counts.values):
plt.text(i, v + 20, str(v), ha='center', fontweight='bold')
plt.tight_layout()
plt.savefig('survival_distribution.png', dpi=300, bbox_inches='tight')
plt.close()

# Visualization 2: Age Distribution
plt.figure(figsize=(10, 6))
plt.hist(df['Age'], bins=30, color='#95E1D3', edgecolor='black', alpha=0.7)
plt.axvline(df['Age'].mean(), color='red', linestyle='--', linewidth=2, label=f'Mean: {df["Age"].mean():.1f}')
plt.axvline(df['Age'].median(), color='blue', linestyle='--', linewidth=2, label=f'Median: {df["Age"].median():.1f}')
plt.title('Age Distribution of Passengers', fontsize=16, fontweight='bold')
plt.xlabel('Age', fontsize=12)
plt.ylabel('Frequency', fontsize=12)
plt.legend()
plt.tight_layout()
plt.savefig('age_distribution.png', dpi=300, bbox_inches='tight')
plt.close()

# Visualization 3: Survival by Class and Gender
plt.figure(figsize=(12, 6))
df_temp = df.copy()
df_temp['Gender'] = df_temp['Sex'].map({0: 'Male', 1: 'Female'})
survival_gender_class = df_temp.groupby(['Pclass', 'Gender'])['Survived'].mean().unstack()
survival_gender_class.plot(kind='bar', color=['#4ECDC4', '#FF6B6B'], width=0.7)
plt.title('Survival Rate by Passenger Class and Gender', fontsize=16, fontweight='bold')
plt.xlabel('Passenger Class', fontsize=12)
plt.ylabel('Survival Rate', fontsize=12)
plt.legend(['Female', 'Male'], title='Gender')
plt.xticks(rotation=0)
plt.ylim(0, 1)
plt.tight_layout()
plt.savefig('survival_by_class_gender.png', dpi=300, bbox_inches='tight')
plt.close()

# Visualization 4: Fare Distribution by Class
plt.figure(figsize=(12, 6))
colors = {1: '#E74C3C', 2: '#3498DB', 3: '#2ECC71'}
for pclass in sorted(df['Pclass'].unique()):
data = df[df['Pclass'] == pclass]
plt.scatter(data.index, data['Fare'], alpha=0.6,
label=f'Class {pclass}', color=colors[pclass], s=50)
plt.title('Fare Distribution by Passenger Class', fontsize=16, fontweight='bold')
plt.xlabel('Passenger Index', fontsize=12)
plt.ylabel('Fare (£)', fontsize=12)
plt.legend()
plt.tight_layout()
plt.savefig('fare_distribution_scatter.png', dpi=300, bbox_inches='tight')
plt.close()

# Visualization 5: Survival by Family Size
plt.figure(figsize=(10, 6))
df['FamilySize'] = df['sibsp'] + df['Parch'] + 1
family_survival = df.groupby('FamilySize')['Survived'].agg(['mean', 'count'])
plt.bar(family_survival.index, family_survival['mean'], color='#9B59B6', alpha=0.7)
plt.title('Survival Rate by Family Size', fontsize=16, fontweight='bold')
plt.xlabel('Family Size (including passenger)', fontsize=12)
plt.ylabel('Survival Rate', fontsize=12)
plt.xticks(family_survival.index)
for i, (idx, row) in enumerate(family_survival.iterrows()):
plt.text(idx, row['mean'] + 0.02, f"n={row['count']}", ha='center', fontsize=9)
plt.tight_layout()
plt.savefig('survival_by_family_size.png', dpi=300, bbox_inches='tight')
plt.close()

# Key Insights
print(f"1. Overall survival rate: {df['Survived'].mean():.2%}")
print(f"2. Female survival rate: {df[df['Sex']==1]['Survived'].mean():.2%}")
print(f"3. Male survival rate: {df[df['Sex']==0]['Survived'].mean():.2%}")
print(f"4. Class 1 survival rate: {df[df['Pclass']==1]['Survived'].mean():.2%}")
print(f"5. Class 2 survival rate: {df[df['Pclass']==2]['Survived'].mean():.2%}")
print(f"6. Class 3 survival rate: {df[df['Pclass']==3]['Survived'].mean():.2%}")
print(f"7. Average age: {df['Age'].mean():.1f} years")
print(f"8. Average fare: £{df['Fare'].mean():.2f}")
print(f"9. Passengers with siblings/spouses: {(df['sibsp'] > 0).sum()}")
print(f"10. Passengers with parents/children: {(df['Parch'] > 0).sum()}")

print("\nSurvival by Embarked Port:")
for port in sorted(df['Embarked'].unique()):
port_name = embarked_map.get(port, 'Unknown')
rate = df[df['Embarked']==port]['Survived'].mean()
count = len(df[df['Embarked']==port])
print(f" Port {port_name}: {rate:.2%} (n={count})")

print("\nSurvival by Family Size:")
for size in sorted(df['FamilySize'].unique())[:8]:
rate = df[df['FamilySize']==size]['Survived'].mean()
count = len(df[df['FamilySize']==size])
print(f" Family size {size}: {rate:.2%} (n={count})")

print("EDA COMPLETE")