Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Lucas #22

Closed
wants to merge 3 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
169 changes: 169 additions & 0 deletions .ipynb_checkpoints/monte_carlo_simulation-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from pathlib import Path\n",
"import hvplot.pandas\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"csv_path = Path('monthly_data.csv')\n",
"monthly_df = pd.read_csv(csv_path, index_col = \"Date\")\n",
"#returns = monthly_df.pct_change()\n",
"#returns.dropna(inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"#returns.isnull().sum()/len(returns)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'DataFrame' object has no attribute 'concat'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-12-b22c387fff1a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mefficient_p\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmonthly_df\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/opt/anaconda3/lib/python3.7/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 5177\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5178\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5179\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5180\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5181\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__setattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mAttributeError\u001b[0m: 'DataFrame' object has no attribute 'concat'"
]
}
],
"source": [
"#portfolio = monthly_df.concat([])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# weight = [] This will have to come from the portfolio efficiency\n",
"# ticker = [] This will come from the \n",
"portfolio_return = stock_df.dot(weights).to_frame()\n",
"portfolio_return.columns = [\"weight\", \"ticker\"]\n",
"portfolio_return.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"portfolio_avg_return = portfolio_return.mean()['Weighted Price']\n",
"portfolio_avg_return"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"portfolio_return = portfolio_return.pct_change()\n",
"portfolio_return.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"portfolio_volatility = portfolio_return['Weighted Price'].std() * np.sqrt(252)\n",
"portfolio_volatility"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"portfolio_last_price = portfolio_return['Weighted Price'][-1]\n",
"portfolio_last_price"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"number_simulations = 500\n",
"number_months = 12 * 5\n",
"monte_carlo = pd.DataFrame()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for n in range(number_simulations):\n",
" simulated_portfolio_prices = [portfolio_last_price]\n",
" for i in range(number_months):\n",
" simulated_price = simulated_portfolio_prices[-1]*(1+ np.random.normal(portfolio_avg_return, portfolio_volatility))\n",
" simulated_portfolio_prices.append(simulated_price)\n",
" monte_carlo[f\"{n+1}\"] = pd.Series(simulated_portfolio_prices)\n",
"\n",
"monte_carlo.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
169 changes: 169 additions & 0 deletions monte_carlo_simulation.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from pathlib import Path\n",
"import hvplot.pandas\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"csv_path = Path('monthly_data.csv')\n",
"monthly_df = pd.read_csv(csv_path, index_col = \"Date\")\n",
"#returns = monthly_df.pct_change()\n",
"#returns.dropna(inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"#returns.isnull().sum()/len(returns)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'DataFrame' object has no attribute 'concat'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-12-b22c387fff1a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mefficient_p\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmonthly_df\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/opt/anaconda3/lib/python3.7/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 5177\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5178\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5179\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5180\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5181\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__setattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mAttributeError\u001b[0m: 'DataFrame' object has no attribute 'concat'"
]
}
],
"source": [
"#portfolio = monthly_df.concat([])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# weight = [] This will have to come from the portfolio efficiency\n",
"# ticker = [] This will come from the \n",
"portfolio_return = stock_df.dot(weights).to_frame()\n",
"portfolio_return.columns = [\"weight\", \"ticker\"]\n",
"portfolio_return.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"portfolio_avg_return = portfolio_return.mean()['Weighted Price']\n",
"portfolio_avg_return"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"portfolio_return = portfolio_return.pct_change()\n",
"portfolio_return.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"portfolio_volatility = portfolio_return['Weighted Price'].std() * np.sqrt(252)\n",
"portfolio_volatility"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"portfolio_last_price = portfolio_return['Weighted Price'][-1]\n",
"portfolio_last_price"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"number_simulations = 500\n",
"number_months = 12 * 5\n",
"monte_carlo = pd.DataFrame()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for n in range(number_simulations):\n",
" simulated_portfolio_prices = [portfolio_last_price]\n",
" for i in range(number_months):\n",
" simulated_price = simulated_portfolio_prices[-1]*(1+ np.random.normal(portfolio_avg_return, portfolio_volatility))\n",
" simulated_portfolio_prices.append(simulated_price)\n",
" monte_carlo[f\"{n+1}\"] = pd.Series(simulated_portfolio_prices)\n",
"\n",
"monte_carlo.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading