Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

efficiency frontier + stock_picking files #12

Merged
merged 2 commits into from
Feb 13, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
156 changes: 156 additions & 0 deletions .ipynb_checkpoints/efficiency_frontier-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd \n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import scipy.optimize as sco\n",
"plt.style.use('fivethirtyeight')\n",
"np.random.seed(777)\n",
"%matplotlib inline\n",
"%config InlineBackend.figure_format = 'retina'"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"tickers = ['HST', 'NWS', 'GPC', 'KO', 'DISCK']\n",
"data_df = pd.DataFrame()\n",
"\n",
"for t in tickers:\n",
" data_df[t] = wb.DataReader(a, data_source = 'yahoo', start = '2010-1-1')['Adj Close']"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"returns = data_df.pct_change()\n",
"returns.dropna(inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"def portfolio_annualised_performance(weights, mean_returns, cov_matrix):\n",
" returns = np.sum(mean_returns*weights ) *252\n",
" std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) * np.sqrt(252)\n",
" return std, returns"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"def random_portfolios(num_portfolios, mean_returns, cov_matrix, risk_free_rate):\n",
" results = np.zeros((3,num_portfolios))\n",
" weights_record = []\n",
" for i in xrange(num_portfolios):\n",
" weights = np.random.random(4)\n",
" weights /= np.sum(weights)\n",
" weights_record.append(weights)\n",
" portfolio_std_dev, portfolio_return = portfolio_annualised_performance(weights, mean_returns, cov_matrix)\n",
" results[0,i] = portfolio_std_dev\n",
" results[1,i] = portfolio_return\n",
" results[2,i] = (portfolio_return - risk_free_rate) / portfolio_std_dev\n",
" return results, weights_record"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"def display_simulated_ef_with_random(mean_returns, cov_matrix, num_portfolios, risk_free_rate):\n",
" results, weights = random_portfolios(num_portfolios,mean_returns, cov_matrix, risk_free_rate)\n",
" \n",
" max_sharpe_idx = np.argmax(results[2])\n",
" sdp, rp = results[0,max_sharpe_idx], results[1,max_sharpe_idx]\n",
" max_sharpe_allocation = pd.DataFrame(weights[max_sharpe_idx],index=table.columns,columns=['allocation'])\n",
" max_sharpe_allocation.allocation = [round(i*100,2)for i in max_sharpe_allocation.allocation]\n",
" max_sharpe_allocation = max_sharpe_allocation.T\n",
" \n",
" min_vol_idx = np.argmin(results[0])\n",
" sdp_min, rp_min = results[0,min_vol_idx], results[1,min_vol_idx]\n",
" min_vol_allocation = pd.DataFrame(weights[min_vol_idx],index=table.columns,columns=['allocation'])\n",
" min_vol_allocation.allocation = [round(i*100,2)for i in min_vol_allocation.allocation]\n",
" min_vol_allocation = min_vol_allocation.T\n",
" \n",
" print (\"-\"*80)\n",
" print (\"Maximum Sharpe Ratio Portfolio Allocation\\n\")\n",
" print (\"Annualised Return:\", round(rp,2))\n",
" print (\"Annualised Volatility:\", round(sdp,2))\n",
" print (\"\\n\")\n",
" print (max_sharpe_allocation)\n",
" print (\"-\"*80)\n",
" print (\"Minimum Volatility Portfolio Allocation\\n\")\n",
" print (\"Annualised Return:\", round(rp_min,2))\n",
" print (\"Annualised Volatility:\", round(sdp_min,2))\n",
" print (\"\\n\")\n",
" print (min_vol_allocation)\n",
" \n",
" plt.figure(figsize=(10, 7))\n",
" plt.scatter(results[0,:],results[1,:],c=results[2,:],cmap='YlGnBu', marker='o', s=10, alpha=0.3)\n",
" plt.colorbar()\n",
" plt.scatter(sdp,rp,marker='*',color='r',s=500, label='Maximum Sharpe ratio')\n",
" plt.scatter(sdp_min,rp_min,marker='*',color='g',s=500, label='Minimum volatility')\n",
" plt.title('Simulated Portfolio Optimization based on Efficient Frontier')\n",
" plt.xlabel('annualised volatility')\n",
" plt.ylabel('annualised returns')\n",
" plt.legend(labelspacing=0.8)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
107 changes: 107 additions & 0 deletions .ipynb_checkpoints/stock_picking-checkpoint.ipynb

Large diffs are not rendered by default.

156 changes: 156 additions & 0 deletions efficiency_frontier.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd \n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import scipy.optimize as sco\n",
"plt.style.use('fivethirtyeight')\n",
"np.random.seed(777)\n",
"%matplotlib inline\n",
"%config InlineBackend.figure_format = 'retina'"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"tickers = ['HST', 'NWS', 'GPC', 'KO', 'DISCK']\n",
"data_df = pd.DataFrame()\n",
"\n",
"for t in tickers:\n",
" data_df[t] = wb.DataReader(a, data_source = 'yahoo', start = '2010-1-1')['Adj Close']"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"returns = data_df.pct_change()\n",
"returns.dropna(inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"def portfolio_annualised_performance(weights, mean_returns, cov_matrix):\n",
" returns = np.sum(mean_returns*weights ) *252\n",
" std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) * np.sqrt(252)\n",
" return std, returns"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"def random_portfolios(num_portfolios, mean_returns, cov_matrix, risk_free_rate):\n",
" results = np.zeros((3,num_portfolios))\n",
" weights_record = []\n",
" for i in xrange(num_portfolios):\n",
" weights = np.random.random(4)\n",
" weights /= np.sum(weights)\n",
" weights_record.append(weights)\n",
" portfolio_std_dev, portfolio_return = portfolio_annualised_performance(weights, mean_returns, cov_matrix)\n",
" results[0,i] = portfolio_std_dev\n",
" results[1,i] = portfolio_return\n",
" results[2,i] = (portfolio_return - risk_free_rate) / portfolio_std_dev\n",
" return results, weights_record"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"def display_simulated_ef_with_random(mean_returns, cov_matrix, num_portfolios, risk_free_rate):\n",
" results, weights = random_portfolios(num_portfolios,mean_returns, cov_matrix, risk_free_rate)\n",
" \n",
" max_sharpe_idx = np.argmax(results[2])\n",
" sdp, rp = results[0,max_sharpe_idx], results[1,max_sharpe_idx]\n",
" max_sharpe_allocation = pd.DataFrame(weights[max_sharpe_idx],index=table.columns,columns=['allocation'])\n",
" max_sharpe_allocation.allocation = [round(i*100,2)for i in max_sharpe_allocation.allocation]\n",
" max_sharpe_allocation = max_sharpe_allocation.T\n",
" \n",
" min_vol_idx = np.argmin(results[0])\n",
" sdp_min, rp_min = results[0,min_vol_idx], results[1,min_vol_idx]\n",
" min_vol_allocation = pd.DataFrame(weights[min_vol_idx],index=table.columns,columns=['allocation'])\n",
" min_vol_allocation.allocation = [round(i*100,2)for i in min_vol_allocation.allocation]\n",
" min_vol_allocation = min_vol_allocation.T\n",
" \n",
" print (\"-\"*80)\n",
" print (\"Maximum Sharpe Ratio Portfolio Allocation\\n\")\n",
" print (\"Annualised Return:\", round(rp,2))\n",
" print (\"Annualised Volatility:\", round(sdp,2))\n",
" print (\"\\n\")\n",
" print (max_sharpe_allocation)\n",
" print (\"-\"*80)\n",
" print (\"Minimum Volatility Portfolio Allocation\\n\")\n",
" print (\"Annualised Return:\", round(rp_min,2))\n",
" print (\"Annualised Volatility:\", round(sdp_min,2))\n",
" print (\"\\n\")\n",
" print (min_vol_allocation)\n",
" \n",
" plt.figure(figsize=(10, 7))\n",
" plt.scatter(results[0,:],results[1,:],c=results[2,:],cmap='YlGnBu', marker='o', s=10, alpha=0.3)\n",
" plt.colorbar()\n",
" plt.scatter(sdp,rp,marker='*',color='r',s=500, label='Maximum Sharpe ratio')\n",
" plt.scatter(sdp_min,rp_min,marker='*',color='g',s=500, label='Minimum volatility')\n",
" plt.title('Simulated Portfolio Optimization based on Efficient Frontier')\n",
" plt.xlabel('annualised volatility')\n",
" plt.ylabel('annualised returns')\n",
" plt.legend(labelspacing=0.8)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
7 changes: 0 additions & 7 deletions ffm_regression.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -510,13 +510,6 @@
"source": [
"ffm_data.index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
Expand Down
107 changes: 107 additions & 0 deletions stock_picking.ipynb

Large diffs are not rendered by default.