Skip to content

Commit

Permalink
Merge pull request #73 from nicholasjclark/stability
Browse files Browse the repository at this point in the history
add VAR stability metrics ala Ives et al
  • Loading branch information
nicholasjclark authored Sep 6, 2024
2 parents 38099b4 + 7f24a4d commit 0b4da24
Show file tree
Hide file tree
Showing 8 changed files with 380 additions and 3 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Package: mvgam
Title: Multivariate (Dynamic) Generalized Additive Models
Version: 1.1.3
Date: 2024-09-03
Date: 2024-09-05
Authors@R: person("Nicholas J", "Clark", , "[email protected]", role = c("aut", "cre"), comment = c(ORCID = "0000-0001-7131-3301"))
Description: Fit Bayesian Dynamic Generalized Additive Models to sets of time series. Users can build dynamic nonlinear State-Space models that can incorporate semiparametric effects in observation and process components, using a wide range of observation families. Estimation is performed using Markov Chain Monte Carlo with Hamiltonian Monte Carlo in the software 'Stan'. References: Clark & Wells (2022) <doi:10.1111/2041-210X.13974>.
URL: https://github.com/nicholasjclark/mvgam, https://nicholasjclark.github.io/mvgam/
Expand Down
2 changes: 2 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@ S3method(score,mvgam_forecast)
S3method(set_coef,mvgam)
S3method(smooth.construct,mod.smooth.spec)
S3method(smooth.construct,moi.smooth.spec)
S3method(stability,mvgam)
S3method(stancode,mvgam)
S3method(stancode,mvgam_prefit)
S3method(standata,mvgam_prefit)
Expand Down Expand Up @@ -136,6 +137,7 @@ export(series_to_mvgam)
export(set_prior)
export(sim_mvgam)
export(slopes)
export(stability)
export(stancode)
export(standata)
export(student)
Expand Down
227 changes: 227 additions & 0 deletions R/stability.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,227 @@
#' Calculate measures of latent VAR community stability
#'
#' Compute reactivity, return rates and contributions of interactions to
#' stationary forecast variance from
#' \code{mvgam} models with Vector Autoregressive dynamics
#'
#'@name stability.mvgam
#'@param object \code{list} object of class \code{mvgam} resulting from a call to [mvgam()]
#'that used a Vector Autoregressive latent process model (either as `VAR(cor = FALSE)` or
#'`VAR(cor = TRUE)`)
#'@param ... ignored
#'@details These measures of stability can be used to assess how systems respond to
#'environmental perturbations. Using the formula for a latent VAR(1) as:
#'\deqn{
#'\mu_t \sim \text{MVNormal}(A(\mu_{t - 1}), \Sigma) \quad
#'}
#'this function will calculate the long-term stationary forecast distribution of the system, which
#'has mean \eqn{\mu_{\infty}} and variance \eqn{\Sigma_{\infty}}, to then calculate the following quantities:
#'\itemize{
#' \item `prop_int`: Proportion of the volume of the stationary forecast distribution
#' that is attributable to lagged interactions (i.e. how important are the autoregressive
#' interaction coefficients in \eqn{A} for explaining the shape of the stationary forecast distribution?):
#' \deqn{
#' det(A)^2 \quad
#' }
#' \item `prop_int_adj`: Same as `prop_int` but scaled by the number of series to facilitate
#' direct comparisons among systems with different numbers of interacting variables \eqn{p}:
#' \deqn{
#' det(A)^{2/p} \quad
#' }
#' \item `prop_int_offdiag`: Sensitivity of `prop_int` to intra-series
#' interactions (i.e. how important are the off-diagonals of the autoregressive coefficient
#' matrix \eqn{A} for shaping `prop_int`?), calculated as the relative magnitude of the *off-diagonals* in
#' the partial derivative matrix:
#' \deqn{
#' [2~det(A) (A^{-1})^T] \quad
#' }
#' \item `prop_int_diag`: Sensitivity of `prop_int` to inter-series
#' interactions (i.e. how important are the diagonals of the autoregressive coefficient matrix \eqn{A}
#' for shaping `prop_int`?), calculated as the relative magnitude of the *diagonals* in the partial derivative
#' matrix:
#' \deqn{
#' [2~det(A) (A^{-1})^T] \quad
#' }
#' \item `prop_cov`: Sensitivity of \eqn{\Sigma_{\infty}} to intra-series error correlations
#' (i.e. how important are off-diagonal covariances in \eqn{\Sigma} for shaping
#' \eqn{\Sigma_{\infty}}?), calculated as the relative magnitude of the *off-diagonals* in
#' the partial derivative matrix:
#' \deqn{
#' [2~det(\Sigma_{\infty}) (\Sigma_{\infty}^{-1})^T] \quad
#' }
#' \item `reactivity`: A measure of the degree to which the system moves
#' away from a stable equilibrium following a perturbation
#' values `> 0` suggest the system is reactive, whereby a
#' perturbation of the system in one period can be amplified in the next period. If
#' \eqn{\sigma_{max}(A)} is the largest singular value of \eqn{A}, then reactivity is defined as:
#' \deqn{
#' log\sigma_{max}(A) \quad
#' }
#' \item `mean_return_rate`: Asymptotic (long-term) return rate of the mean of the transition distribution
#' to the stationary mean, calculated using the largest eigenvalue of the matrix \eqn{A}:
#' \deqn{
#' max(\lambda_{A}) \quad
#' }
#' Lower values suggest greater stability
#' \item `var_return_rate`: Asymptotic (long-term) return rate of the variance of the transition distribution
#' to the stationary variance:
#' \deqn{
#' max(\lambda_{A \otimes{A}}) \quad
#' }
#' Again, lower values suggest greater stability
#' }
#'@return An \code{data.frame} containing posterior draws for each of the above stability metrics.
#'@references AR Ives, B Dennis, KL Cottingham & SR Carpenter (2003).
#'Estimating community stability and ecological interactions from time-series data.
#'Ecological Monographs. 73, 301-330.
#'@author Nicholas J Clark
#'@seealso \code{\link{VAR}}
#' @examples
#' \donttest{
#' # Simulate some time series that follow a latent VAR(1) process
#' simdat <- sim_mvgam(family = gaussian(),
#' n_series = 4,
#' trend_model = VAR(cor = TRUE),
#' prop_trend = 1)
#' plot_mvgam_series(data = simdat$data_train, series = 'all')
#'
#' # Fit a model that uses a latent VAR(1)
#' mod <- mvgam(y ~ -1,
#' trend_formula = ~ 1,
#' trend_model = VAR(cor = TRUE),
#' family = gaussian(),
#' data = simdat$data_train,
#' silent = 2)
#'
#' # Calulate stability metrics for this system
#' metrics <- stability(mod)
#'
#' # Proportion of stationary forecast distribution
#' # attributable to lagged interactions
#' hist(metrics$prop_int,
#' xlim = c(0, 1),
#' xlab = 'Prop_int',
#' main = '',
#' col = '#B97C7C',
#' border = 'white')
#'
#' # Proportion of stationary forecast distribution
#' # attributable to correlated process errors
#' hist(metrics$prop_env,
#' xlim = c(0, 1),
#' xlab = 'Prop_env',
#' main = '',
#' col = '#B97C7C',
#' border = 'white')
#'
#' # Reactivity, i.e. degree to which the system moves
#' # away from a stable equilibrium following a perturbation
#' hist(metrics$reactivity,
#' main = '',
#' xlab = 'Reactivity',
#' col = '#B97C7C',
#' border = 'white',
#' xlim = c(-1*max(abs(metrics$reactivity)),
#' max(abs(metrics$reactivity))))
#' abline(v = 0, lwd = 2.5)
#' }
#'@export
stability <- function(object, ...){
UseMethod("stability", object)
}

#'@rdname stability.mvgam
#'@method stability mvgam
#'@export
stability.mvgam = function(object){

# Check trend_model
trend_model <- attr(object$model_data, 'trend_model')
if(!trend_model %in% c('VAR', 'VARcor', 'VAR1', 'VAR1cor')){
stop('Only VAR(1) models currently supported for calculating stability metrics',
call. = FALSE)
}

# Take posterior draws of the interaction matrix
B_post <- as.matrix(object, variable = 'A', regex = TRUE)

# Take posterior draws of Sigma
Sigma_post <- as.matrix(object, variable = 'Sigma', regex = TRUE)

# Number of series in the VAR process
n_series <- object$n_lv

metrics <- do.call(rbind, lapply(seq_len(NROW(B_post)), function(i){

B <- matrix(B_post[i,],
nrow = n_series,
ncol = n_series)
p <- dim(B)[1]

# If we want to get the variance of the stationary distribution (Sigma_inf)
Sigma <- matrix(Sigma_post[i,],
nrow = n_series,
ncol = n_series)
vecS_inf <- solve(diag(p * p) - kronecker(B, B)) %*% as.vector(Sigma)
Sigma_inf <- matrix(vecS_inf, nrow = p)

# The difference in volume between Sigma_inf and Sigma is:
# det(Sigma_inf - Sigma) = det(Sigma_inf) * det(B) ^ 2
# according to Ives et al 2003 (eqn 24)

# We can take partial derivatives to determine which elements of
# Sigma_inf contribute most to rates of change in the
# proportion of Sigma_inf that is due to process error
int_env <- det(Sigma_inf) * t(solve(Sigma_inf))

# Proportion of inter-series covariance to
# to overall environmental variation contribution (i.e. how important are
# correlated errors for controlling the shape of the stationary forecast
# distribution?)
dat <- data.frame(prop_cov = mean(abs(int_env[lower.tri(int_env)])) /
(mean(abs(diag(int_env))) + mean(abs(int_env[lower.tri(int_env)]))))

# Proportion of volume of Sigma_inf attributable to series interactions,
# measuring the degree to which interactions increase
# the variance of the stationary distribution (Sigma_inf) relative
# to the variance of the process error (Sigma)
# lower values = more stability
dat$prop_int = abs(det(B)) ^ 2

# Ives et al 2003 suggest to scale this by the number of series for more direct
# comparisons among different studies
dat$prop_int_adj <- abs(det(B)) ^ (2 / p)

# Sensitivity of the species interaction proportion to particular
# interactions is also calculated using partial derivatives
# (note the use of 2 here because we squared det(B) in the above eqn)
int_sens <- 2 * det(B) * t(solve(B))

# Proportion of interspecific contributions to
# to overall interaction contribution
dat$prop_int_offdiag <- mean(abs(int_sens[lower.tri(int_sens)])) /
(mean(abs(diag(int_sens))) + mean(abs(int_sens[lower.tri(int_sens)])))

# Proportion of density dependent contributions to
# to overall interaction contribution
dat$prop_int_diag <- 1 - dat$prop_int_offdiag

# Reactivity, measuring the degree to which the system moves
# away from a stable equilibrium following a perturbation
# values > 0 suggest the system is reactive, whereby a
# perturbation of the system in one period can be amplified in the next period
# Following Neubert et al 2009 Ecology (Detecting reactivity)
dat$reactivity <- log(max(svd(B)$d))

# Return rate of transition distribution to the stationary distribution
# Asymptotic return rate of the mean
# lower values = more stability
dat$mean_return_rate <- max(abs(eigen(B)$values))

# Asymptotic return rate of the variance
# lower values = more stability
dat$var_return_rate <- max(abs(eigen(B %x% B)$values))
dat
}))
return(metrics)
}
2 changes: 0 additions & 2 deletions man/mvgam_marginaleffects.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading

0 comments on commit 0b4da24

Please sign in to comment.