"Natural" is a general natural language facility for nodejs. Tokenizing, stemming, classification, phonetics, tf-idf, WordNet, string similarity, and some inflection are currently supported.
It's still in the early stages, and am very interested in bug reports, contributions and the like.
Note that many algorithms from Rob Ellis's node-nltools are being merged in to this project and will be maintained here going forward.
At the moment most algorithms are English-specific but long-term some diversity is in order. Thanks to Polyakov Vladimir Russian stemming has been added!
Aside from this README the only documentation is this DZone article and here on my blog which is a bit older.
If you're just looking to consume natural without your own node application please install the NPM
npm install natural
If you're interested in contributing to natural or just hacking it then by all means fork away!
Word, Regexp and Treebank tokenizers are provided for breaking text up into arrays of tokens.
var natural = require('natural'),
tokenizer = new natural.WordTokenizer();
console.log(tokenizer.tokenize("your dog has flees."));
// [ 'your', 'dog', 'has', 'flees' ]
The other tokenizers follow a similar pattern
tokenizer = new natural.TreebankWordTokenizer();
console.log(tokenizer.tokenize("my dog hasn't any flees."));
// [ 'my', 'dog', 'has', 'n\'t', 'any', 'flees', '.' ]
tokenizer = new natural.RegexpTokenizer({pattern: /\-/});
console.log(tokenizer.tokenize("flee-dog"));
// [ 'flee', 'dog' ]
tokenizer = new natural.WordPunctTokenizer();
console.log(tokenizer.tokenize("my dog hasn't any flees."));
// [ 'my', 'dog', 'hasn', '\'', 't', 'any', 'flees', '.' ]
Natural provides an implementation of of the Jaro-Winkler string distance measure. This will return a number between 0 and 1 of how closely the strings match (0 = not at all, 1 = exact match)
var natural = require('natural');
console.log(natural.JaroWinklerDistance("dixon","dicksonx"))
console.log(natural.JaroWinklerDistance('not', 'same'));
Output:
0.7466666666666666
0
Natural also offers support for Levenshtein distances.
var natural = require('natural');
console.log(natural.LevenshteinDistance("ones","onez"));
console.log(natural.LevenshteinDistance('one', 'one'));
Output:
2
0
The cost of the three edit operations are modifiable for Levenshtein
console.log(natural.LevenshteinDistance("ones","onez", {
insertion_cost: 1,
deletion_cost: 1,
substitution_cost: 1
}));
Output:
1
And Dice's co-efficient:
var natural = require('natural');
console.log(natural.DiceCoefficient('thing', 'thing'));
console.log(natural.DiceCoefficient('not', 'same'));
Output
1
0
Currently stemming is supported via the Porter (English and Russian) and Lancaster (Paice/Husk) algorithms.
var natural = require('natural');
this example uses a porter stemmer. "word" is returned.
console.log(natural.PorterStemmer.stem("words")); // stem a single word
and in Russian
console.log(natural.PorterStemmerRu.stem("падший"));
attach() patches stem() and tokenizeAndStem() to String as a shortcut to PorterStemmer.stem(token). tokenizeAndStem() breaks text up into single words and returns an array of stemmed tokens.
natural.PorterStemmer.attach();
console.log("i am waking up to the sounds of chainsaws".tokenizeAndStem());
console.log("chainsaws".stem());
the same thing can be done with a lancaster stemmer
natural.LancasterStemmer.attach();
console.log("i am waking up to the sounds of chainsaws".tokenizeAndStem());
console.log("chainsaws".stem());
Two classifiers are currently supported, Naive Bayes and logistic regression. The following examples use the BayesClassifier class, but the LogisticRegressionClassifier class could be substituted instead.
var natural = require('natural'),
classifier = new natural.BayesClassifier();
you can train the classifier on sample text. it will use reasonable defaults to tokenize and stem the text.
classifier.addDocument('i am long qqqq', 'buy');
classifier.addDocument('buy the q's', 'buy');
classifier.addDocument('short gold', 'sell');
classifier.addDocument('sell gold', 'sell');
classifier.train();
outputs "sell"
console.log(classifier.classify('i am short silver'));
outputs "buy"
console.log(classifier.classify('i am long copper'));
you have access to the set of matched classes and the associated value from the classifier.
outputs:
[ { label: 'sell', value: 0.39999999999999997 },
{ label: 'buy', value: 0.19999999999999998 } ]
from this:
console.log(classifier.getClassifications('i am long copper'));
the classifier can also be trained on and classify arrays of tokens, strings, or any mixture. arrays let you use entirely custom data with your own tokenization/stemming if any at all.
classifier.addDocument(['sell', 'gold'], 'sell');
A classifier can also be persisted and recalled so you can reuse a training
classifier.save('classifier.json', function(err, classifier) {
// the classifier is saved to the classifier.json file!
});
and to recall from the classifier.json saved above:
natural.BayesClassifier.load('classifier.json', null, function(err, classifier) {
console.log(classifier.classify('long SUNW'));
console.log(classifier.classify('short SUNW'));
});
A classifier can also be serialized and deserialized as such
var classifier = new natural.BayesClassifier();
classifier.addDocument(['sell', 'gold'], 'sell');
classifier.addDocument(['buy', 'silver'], 'buy');
// serialize
var raw = JSON.stringify(classifier);
// deserialize
var restoredClassifier = natural.BayesClassifier.restore(raw);
console.log(restoredClassifier.classify('i should sell that'));
Phonetic matching (sounds-like) matching can be done withthe SoundEx, Metaphone or DoubleMetaphone algorithms
var natural = require('natural'),
metaphone = natural.Metaphone, soundEx = natural.SoundEx;
var wordA = 'phonetics';
var wordB = 'fonetix';
test the two words to see if they sound alike
if(metaphone.compare(wordA, wordB))
console.log('they sound alike!');
the raw phonetics are obtained with process()
console.log(metaphone.process('phonetics'));
a maximum code length can be supplied
console.log(metaphone.process('phonetics', 3));
DoubleMetaphone deals with two encodings returned in an array. This feature is experimental and subject to change.
var natural = require('natural'),
dm = natural.DoubleMetaphone;
var encodings = dm.process('Matrix');
console.log(encodings[0]);
console.log(encodings[1]);
attaching will patch String with useful methods
metaphone.attach();
soundsLike is essentially a shortcut to Metaphone.compare
if(wordA.soundsLike(wordB))
console.log('they sound alike!');
the raw phonetics are obtained with phonetics()
console.log('phonetics'.phonetics());
full text strings can be tokenized into arrays of phonetics similar to stemmers
console.log('phonetics rock'.tokenizeAndPhoneticize());
same module operations apply with SoundEx
if(soundEx.compare(wordA, wordB))
console.log('they sound alike!');
the same String patches apply with soundex
soundEx.attach();
if(wordA.soundsLike(wordB))
console.log('they sound alike!');
console.log('phonetics'.phonetics());
Nouns can be pluralized/singularized with a NounInflector
var natural = require('natural'),
nounInflector = new natural.NounInflector();
to pluralize a word (outputs "radii")
console.log(nounInflector.pluralize('radius'));
to singularize a word (outputs "beer")
console.log(nounInflector.singularize('beers'));
Like many of the other features String can be patched to perform the operations directly. The "Noun" suffix to the methods is necessary as verbs will be supported in the future.
nounInflector.attach();
console.log('radius'.pluralizeNoun());
console.log('beers'.singularizeNoun());
Numbers can be counted with a CountInflector
var countInflector = natural.CountInflector;
outputs "1st"
console.log(countInflector.nth(1));
outputs "111th"
console.log(countInflector.nth(111));
Present Tense Verbs can be pluralized/singularized with a PresentVerbInflector. This feature is still experimental as of 0.0.42 so use with caution and please provide feedback.
var verbInflector = new natural.PresentVerbInflector();
outputs "becomes"
console.log(verbInflector.singularize('become'));
outputs "become"
console.log(verbInflector.pluralize('becomes'));
Like many other natural modules attach() can be used to patch strings with handy methods.
verbInflector.attach();
console.log('walk'.singularizePresentVerb());
console.log('walks'.pluralizePresentVerb());
n-grams can be obtained for either arrays or strings (which will be tokenized for you)
var NGrams = natural.NGrams;
console.log(NGrams.bigrams('some words here'));
console.log(NGrams.bigrams(['some', 'words', 'here']));
both of which output [ [ 'some', 'words' ], [ 'words', 'here' ] ]
console.log(NGrams.trigrams('some other words here'));
console.log(NGrams.trigrams(['some', 'other', 'words', 'here']));
both of which output [ [ 'some', 'other', 'words' ], [ 'other', 'words', 'here' ] ]
console.log(NGrams.ngrams('some other words here for you', 4));
console.log(NGrams.ngrams(['some', 'other', 'words', 'here', 'for',
'you'], 4));
which outputs [ [ 'some', 'other', 'words', 'here' ], [ 'other', 'words', 'here', 'for' ], [ 'words', 'here', 'for', 'you' ] ]
Term Frequency–Inverse Document Frequency (tf-idf) is implemented to determine how important a word (or words) is to a document relative to a corpus. The following example will add four documents to a corpus and determine the weight of the word "node" and then the weight of the word "ruby" in each document.
var natural = require('natural'),
TfIdf = natural.TfIdf,
tfidf = new TfIdf();
tfidf.addDocument('this document is about node.');
tfidf.addDocument('this document is about ruby.');
tfidf.addDocument('this document is about ruby and node.');
tfidf.addDocument('this document is about node. it has node examples');
console.log('node --------------------------------');
tfidf.tfidfs('node', function(i, measure) {
console.log('document #' + i + ' is ' + measure);
});
console.log('ruby --------------------------------');
tfidf.tfidfs('ruby', function(i, measure) {
console.log('document #' + i + ' is ' + measure);
});
which outputs
node --------------------------------
document #0 is 1.4469189829363254
document #1 is 0
document #2 is 1.4469189829363254
document #3 is 2.8938379658726507
ruby --------------------------------
document #0 is 0
document #1 is 1.466337068793427
document #2 is 1.466337068793427
document #3 is 0
Of course you can measure a single document. The following example measures the term "node" in the first and second documents.
console.log(tfidf.tfidf('node', 0));
console.log(tfidf.tfidf('node', 1));
A TfIdf instance can also load documents from files on disk.
var tfidf = new TfIdf();
tfidf.addFileSync('data_files/one.txt');
tfidf.addFileSync('data_files/two.txt');
Multiple terms can be measured as well with their weights being added into a single measure value. The following example determines that the last document is the most relevent to the words "node" and "ruby".
var natural = require('natural'),
TfIdf = natural.TfIdf,
tfidf = new TfIdf();
tfidf.addDocument('this document is about node.');
tfidf.addDocument('this document is about ruby.');
tfidf.addDocument('this document is about ruby and node.');
tfidf.tfidfs('node ruby', function(i, measure) {
console.log('document #' + i + ' is ' + measure);
});
which outputs
document #0 is 1.2039728043259361
document #1 is 1.2039728043259361
document #2 is 2.4079456086518722
The examples above all use strings in which case natural will tokenize the input. If you wish to perform your own tokenization or other kinds of processing you can do so and then pass in the resultant arrays. That will cause natural to bypass its own preprocessing.
var natural = require('natural'),
TfIdf = natural.TfIdf,
tfidf = new TfIdf();
tfidf.addDocument(['document', 'about', 'node']);
tfidf.addDocument(['document', 'about', 'ruby']);
tfidf.addDocument(['document', 'about', 'ruby', 'node']);
tfidf.addDocument(['document', 'about', 'node', 'node', 'examples']);
tfidf.tfidfs(['node', 'ruby'], function(i, measure) {
console.log('document #' + i + ' is ' + measure);
});
It's possible to retrieve a list of all terms in a document sorted by their importance.
tfidf.listTerms(0 /*document index*/).forEach(function(item) {
console.log(item.term + ': ' + item.tfidf);
});
A TfIdf instance can also be serialized and deserialzed for save and recall.
var tfidf = new TfIdf();
tfidf.addDocument('document one', 'un');
tfidf.addDocument('document Two', 'deux');
var s = JSON.stringify(tfidf);
// save "s" to disk, database or otherwise
// assuming you pulled "s" back out of storage.
var tfidf = new TfIdf(JSON.parse(s));
One of the newest and most experimental features is WordNet integration. Here's an example of using natural to look up definitions of the word node. To use the WordNet module, first install the WordNet database files using the WNdb module:
npm install WNdb
(For node < v0.6, please use 'npm install [email protected]')
Keep in mind the WordNet integration is to be considered experimental at this point and not production ready. The API is also subject to change.
Here's an exmple of looking up definitions for the word, "node".
var wordnet = new natural.WordNet();
wordnet.lookup('node', function(results) {
results.forEach(function(result) {
console.log('------------------------------------');
console.log(result.synsetOffset);
console.log(result.pos);
console.log(result.lemma);
console.log(result.synonyms);
console.log(result.pos);
console.log(result.gloss);
});
});
Given a synset offset and part of speech a definition can be looked up directly.
var wordnet = new natural.WordNet();
wordnet.get(4424418, 'n', function(result) {
console.log('------------------------------------');
console.log(result.lemma);
console.log(result.pos);
console.log(result.gloss);
console.log(result.synonyms);
});
If you have manually downloaded the WordNet database files, you can pass the folder to the constructor:
var wordnet = new natural.WordNet('/my/wordnet/dict');
As of v0.1.11, WordNet data files are no longer automatically downloaded.
Princeton University "About WordNet." WordNet. Princeton University. 2010. http://wordnet.princeton.edu
Copyright (c) 2011, Chris Umbel, Rob Ellis, Russell Mull
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
This license is available as the file LICENSE in any downloaded version of WordNet. WordNet 3.0 license: (Download)
WordNet Release 3.0 This software and database is being provided to you, the LICENSEE, by Princeton University under the following license. By obtaining, using and/or copying this software and database, you agree that you have read, understood, and will comply with these terms and conditions.: Permission to use, copy, modify and distribute this software and database and its documentation for any purpose and without fee or royalty is hereby granted, provided that you agree to comply with the following copyright notice and statements, including the disclaimer, and that the same appear on ALL copies of the software, database and documentation, including modifications that you make for internal use or for distribution. WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. THIS SOFTWARE AND DATABASE IS PROVIDED "AS IS" AND PRINCETON UNIVERSITY MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PRINCETON UNIVERSITY MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE, DATABASE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. The name of Princeton University or Princeton may not be used in advertising or publicity pertaining to distribution of the software and/or database. Title to copyright in this software, database and any associated documentation shall at all times remain with Princeton University and LICENSEE agrees to preserve same.