|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "8dcd267e", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# NODES 2025 Demo\n", |
| 9 | + "\n", |
| 10 | + "This notebook represents the demo part of the [presentation](https://neo4j.com/nodes-2025/agenda/easy-jupyter-notebook-graph-visualization-in-10-minutes/) at the NODES 2025 conference." |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "markdown", |
| 15 | + "id": "e15fcce5", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "## Setup" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": null, |
| 24 | + "id": "fb45b182", |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "%pip install \"neo4j-viz[gds, neo4j]\" python-dotenv" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": null, |
| 34 | + "id": "10b32405", |
| 35 | + "metadata": {}, |
| 36 | + "outputs": [], |
| 37 | + "source": [ |
| 38 | + "from dotenv import load_dotenv\n", |
| 39 | + "\n", |
| 40 | + "# Load credentials for the neo4j database\n", |
| 41 | + "load_dotenv(\"db_creds.env\")" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "markdown", |
| 46 | + "id": "cfb884ec", |
| 47 | + "metadata": {}, |
| 48 | + "source": [ |
| 49 | + "## Building our visualization graph\n", |
| 50 | + "\n" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "markdown", |
| 55 | + "id": "02304ee4", |
| 56 | + "metadata": {}, |
| 57 | + "source": [ |
| 58 | + "### From a Create Query string\n", |
| 59 | + "\n", |
| 60 | + "The most simple way to test out neo4j-viz is by using `from_gql_create`.\n", |
| 61 | + "The nodes and relationships are directly parsed from the provided query string. " |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": null, |
| 67 | + "id": "05eda814", |
| 68 | + "metadata": {}, |
| 69 | + "outputs": [], |
| 70 | + "source": [ |
| 71 | + "from neo4j_viz.gql_create import from_gql_create\n", |
| 72 | + "\n", |
| 73 | + "VG = from_gql_create(\"\"\"\n", |
| 74 | + " CREATE\n", |
| 75 | + " (alice:Person {name: 'Alice', age: 30}),\n", |
| 76 | + " (bob:Person {name: 'Bob', age: 25}),\n", |
| 77 | + " (carol:Person {name: 'Carol', age: 27}),\n", |
| 78 | + " (alice)-[:FRIENDS_WITH {since: 2015}]->(bob),\n", |
| 79 | + " (bob)-[:FRIENDS_WITH {since: 2018}]->(carol)\n", |
| 80 | + "\"\"\")\n", |
| 81 | + "\n", |
| 82 | + "VG.render(initial_zoom=1.5)" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "markdown", |
| 87 | + "id": "32979c03", |
| 88 | + "metadata": {}, |
| 89 | + "source": [ |
| 90 | + "## From a Neo4j database\n", |
| 91 | + "\n", |
| 92 | + "Now lets assume, you have a Neo4j database available which you want to inspect.\n", |
| 93 | + "In the following, I assume the Movies dataset is imported. You can use `:play movies` in the Neo4j Browser to import the dataset. " |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "code", |
| 98 | + "execution_count": null, |
| 99 | + "id": "72b14cea", |
| 100 | + "metadata": {}, |
| 101 | + "outputs": [], |
| 102 | + "source": [ |
| 103 | + "import os\n", |
| 104 | + "import neo4j\n", |
| 105 | + "from neo4j_viz.neo4j import from_neo4j\n", |
| 106 | + "\n", |
| 107 | + "driver = neo4j.GraphDatabase.driver(\n", |
| 108 | + " uri=os.getenv(\"NEO4J_URI\"),\n", |
| 109 | + " auth=(os.getenv(\"NEO4J_USERNAME\"), os.getenv(\"NEO4J_PASSWORD\")),\n", |
| 110 | + ")\n", |
| 111 | + "\n", |
| 112 | + "# Limiting to 20 rows for demo purposes\n", |
| 113 | + "VG = from_neo4j(driver, row_limit=20)\n", |
| 114 | + "VG.render(initial_zoom=1.0)" |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "markdown", |
| 119 | + "id": "8c7091b4", |
| 120 | + "metadata": {}, |
| 121 | + "source": [ |
| 122 | + "## From GDS" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": null, |
| 128 | + "id": "153decdb", |
| 129 | + "metadata": {}, |
| 130 | + "outputs": [], |
| 131 | + "source": [ |
| 132 | + "from graphdatascience import GraphDataScience\n", |
| 133 | + "\n", |
| 134 | + "gds = GraphDataScience(\n", |
| 135 | + " endpoint=os.getenv(\"NEO4J_URI\"),\n", |
| 136 | + " auth=(os.getenv(\"NEO4J_USERNAME\"), os.getenv(\"NEO4J_PASSWORD\")),\n", |
| 137 | + ")\n", |
| 138 | + "gds.set_database(\"neo4j\")" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": null, |
| 144 | + "id": "4c7cdcb4", |
| 145 | + "metadata": {}, |
| 146 | + "outputs": [], |
| 147 | + "source": [ |
| 148 | + "G, _ = gds.graph.cypher.project(\n", |
| 149 | + " query=\"\"\"\n", |
| 150 | + " MATCH (s:Person)-[:ACTED_IN]->(m:Movie)<-[:ACTED_IN]-(t:Person)\n", |
| 151 | + " WITH s, t, count(m) as common_movies\n", |
| 152 | + " WHERE s < t\n", |
| 153 | + " RETURN gds.graph.project('demo-graph', s, t, {\n", |
| 154 | + " sourceNodeLabels: labels(s),\n", |
| 155 | + " targetNodeLabels: labels(t),\n", |
| 156 | + " relationshipProperties: {weight: common_movies},\n", |
| 157 | + " relationshipType: 'CO_ACTED'\n", |
| 158 | + " }, {undirectedRelationshipTypes: ['CO_ACTED']})\n", |
| 159 | + "\"\"\"\n", |
| 160 | + ")\n", |
| 161 | + "\n", |
| 162 | + "str(G)" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "markdown", |
| 167 | + "id": "c5652cd6", |
| 168 | + "metadata": {}, |
| 169 | + "source": [ |
| 170 | + "How do we make sure the projection matches our expectation? Especially if the Cypher queries get more complex" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "code", |
| 175 | + "execution_count": null, |
| 176 | + "id": "d1b405bd", |
| 177 | + "metadata": {}, |
| 178 | + "outputs": [], |
| 179 | + "source": [ |
| 180 | + "from neo4j_viz.gds import from_gds\n", |
| 181 | + "\n", |
| 182 | + "# Limit to a couple of nodes to inspect the projection. Sampling via random-walks implemented in GDS\n", |
| 183 | + "VG = from_gds(gds, G, db_node_properties=[\"name\"], max_node_count=20)\n", |
| 184 | + "VG.render()" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "markdown", |
| 189 | + "id": "eabdc19f", |
| 190 | + "metadata": {}, |
| 191 | + "source": [ |
| 192 | + "Lets run some GDS algorithms to get some more insights about our co-actor graph." |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "code", |
| 197 | + "execution_count": null, |
| 198 | + "id": "7bfd2bc6", |
| 199 | + "metadata": {}, |
| 200 | + "outputs": [], |
| 201 | + "source": [ |
| 202 | + "gds.pageRank.mutate(G, relationshipWeightProperty=\"weight\", mutateProperty=\"pageRank\")\n", |
| 203 | + "gds.leiden.mutate(G, mutateProperty=\"component\", relationshipWeightProperty=\"weight\")" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "markdown", |
| 208 | + "id": "331f7f79", |
| 209 | + "metadata": {}, |
| 210 | + "source": [ |
| 211 | + "Other supported datasources include `from_snowflake`, and `from_pandas`." |
| 212 | + ] |
| 213 | + }, |
| 214 | + { |
| 215 | + "cell_type": "markdown", |
| 216 | + "id": "4c7da83d", |
| 217 | + "metadata": {}, |
| 218 | + "source": [ |
| 219 | + "## Customizing the Visualization" |
| 220 | + ] |
| 221 | + }, |
| 222 | + { |
| 223 | + "cell_type": "code", |
| 224 | + "execution_count": null, |
| 225 | + "id": "8c3e5d7a", |
| 226 | + "metadata": {}, |
| 227 | + "outputs": [], |
| 228 | + "source": [ |
| 229 | + "from neo4j_viz.gds import from_gds\n", |
| 230 | + "\n", |
| 231 | + "# make sure to include also the newly computed properties such as pageRank\n", |
| 232 | + "# by default from_gds includes all properties of G\n", |
| 233 | + "VG = from_gds(gds, G, db_node_properties=[\"name\"])\n", |
| 234 | + "VG.render()" |
| 235 | + ] |
| 236 | + }, |
| 237 | + { |
| 238 | + "cell_type": "code", |
| 239 | + "execution_count": null, |
| 240 | + "id": "c5fc8746", |
| 241 | + "metadata": {}, |
| 242 | + "outputs": [], |
| 243 | + "source": [ |
| 244 | + "# Lets first fix the caption of the nodes to show the name.\n", |
| 245 | + "for node in VG.nodes:\n", |
| 246 | + " node.caption = node.properties.get(\"name\")\n", |
| 247 | + "\n", |
| 248 | + "VG.render()" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "code", |
| 253 | + "execution_count": null, |
| 254 | + "id": "5bb837b7", |
| 255 | + "metadata": {}, |
| 256 | + "outputs": [], |
| 257 | + "source": [ |
| 258 | + "# Inspect the computed communities to see which actors are grouped together\n", |
| 259 | + "VG.color_nodes(property=\"component\", override=True)\n", |
| 260 | + "VG.render()" |
| 261 | + ] |
| 262 | + }, |
| 263 | + { |
| 264 | + "cell_type": "code", |
| 265 | + "execution_count": null, |
| 266 | + "id": "5c6839b0", |
| 267 | + "metadata": {}, |
| 268 | + "outputs": [], |
| 269 | + "source": [ |
| 270 | + "# Resize nodes based on pageRank property, i.e., more important actors appear larger\n", |
| 271 | + "VG.resize_nodes(property=\"pageRank\")\n", |
| 272 | + "VG.render()" |
| 273 | + ] |
| 274 | + }, |
| 275 | + { |
| 276 | + "cell_type": "code", |
| 277 | + "execution_count": null, |
| 278 | + "id": "d8f4e4f0", |
| 279 | + "metadata": {}, |
| 280 | + "outputs": [], |
| 281 | + "source": [ |
| 282 | + "# To make sure certain nodes are always visible, we can pin them. Here we pin \"Keanu Reeves\".\n", |
| 283 | + "pinned_nodes = {\n", |
| 284 | + " node.id: True\n", |
| 285 | + " for node in VG.nodes\n", |
| 286 | + " if node.properties.get(\"name\") in [\"Keanu Reeves\"]\n", |
| 287 | + "}\n", |
| 288 | + "\n", |
| 289 | + "VG.toggle_nodes_pinned(pinned_nodes)\n", |
| 290 | + "VG.render()" |
| 291 | + ] |
| 292 | + }, |
| 293 | + { |
| 294 | + "cell_type": "markdown", |
| 295 | + "id": "4e565d57", |
| 296 | + "metadata": {}, |
| 297 | + "source": [ |
| 298 | + "Further customization ideas to explore: \n", |
| 299 | + "\n", |
| 300 | + "* Modify the layout such as by adding coordinates\n", |
| 301 | + "* Use custom colors from [`palettable.wesanderson`](https://jiffyclub.github.io/palettable/) \n", |
| 302 | + "* Change the size range for nodes" |
| 303 | + ] |
| 304 | + }, |
| 305 | + { |
| 306 | + "cell_type": "markdown", |
| 307 | + "id": "311fbb2f", |
| 308 | + "metadata": {}, |
| 309 | + "source": [ |
| 310 | + "## Saving the Visualization" |
| 311 | + ] |
| 312 | + }, |
| 313 | + { |
| 314 | + "cell_type": "code", |
| 315 | + "execution_count": null, |
| 316 | + "id": "efd0a82c", |
| 317 | + "metadata": {}, |
| 318 | + "outputs": [], |
| 319 | + "source": [ |
| 320 | + "# Use the save button in the rendered view. This produces a static image.\n", |
| 321 | + "VG.render()" |
| 322 | + ] |
| 323 | + }, |
| 324 | + { |
| 325 | + "cell_type": "markdown", |
| 326 | + "id": "a5128b85", |
| 327 | + "metadata": {}, |
| 328 | + "source": [] |
| 329 | + }, |
| 330 | + { |
| 331 | + "cell_type": "code", |
| 332 | + "execution_count": null, |
| 333 | + "id": "11201815", |
| 334 | + "metadata": {}, |
| 335 | + "outputs": [], |
| 336 | + "source": [ |
| 337 | + "# Save the raw HTML output to a file. This allows to share the interactive visualization.\n", |
| 338 | + "\n", |
| 339 | + "import os\n", |
| 340 | + "from neo4j_viz.options import Renderer\n", |
| 341 | + "\n", |
| 342 | + "os.makedirs(\"./out\", exist_ok=True)\n", |
| 343 | + "\n", |
| 344 | + "# Save the visualization to a file\n", |
| 345 | + "with open(\"out/co_acted.html\", \"w\") as f:\n", |
| 346 | + " f.write(VG.render(renderer=Renderer.CANVAS).data)" |
| 347 | + ] |
| 348 | + }, |
| 349 | + { |
| 350 | + "cell_type": "markdown", |
| 351 | + "id": "71c3f41e", |
| 352 | + "metadata": {}, |
| 353 | + "source": [ |
| 354 | + "## Cleanup" |
| 355 | + ] |
| 356 | + }, |
| 357 | + { |
| 358 | + "cell_type": "code", |
| 359 | + "execution_count": null, |
| 360 | + "id": "322d137f", |
| 361 | + "metadata": {}, |
| 362 | + "outputs": [], |
| 363 | + "source": [ |
| 364 | + "driver.close()" |
| 365 | + ] |
| 366 | + }, |
| 367 | + { |
| 368 | + "cell_type": "code", |
| 369 | + "execution_count": null, |
| 370 | + "id": "429dec14", |
| 371 | + "metadata": {}, |
| 372 | + "outputs": [], |
| 373 | + "source": [ |
| 374 | + "gds.graph.get(\"demo-graph\").drop()" |
| 375 | + ] |
| 376 | + }, |
| 377 | + { |
| 378 | + "cell_type": "code", |
| 379 | + "execution_count": null, |
| 380 | + "id": "010ab463", |
| 381 | + "metadata": {}, |
| 382 | + "outputs": [], |
| 383 | + "source": [ |
| 384 | + "gds.close()" |
| 385 | + ] |
| 386 | + } |
| 387 | + ], |
| 388 | + "metadata": { |
| 389 | + "language_info": { |
| 390 | + "name": "python" |
| 391 | + } |
| 392 | + }, |
| 393 | + "nbformat": 4, |
| 394 | + "nbformat_minor": 5 |
| 395 | +} |
0 commit comments