Build / Spark Connect Python-only (master, Python 3.11) #33
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
# | |
name: Build / Spark Connect Python-only (master, Python 3.11) | |
on: | |
schedule: | |
- cron: '0 19 * * *' | |
workflow_dispatch: | |
jobs: | |
# Build: build Spark and run the tests for specified modules using SBT | |
build: | |
name: "Build modules: pyspark-connect" | |
runs-on: ubuntu-latest | |
timeout-minutes: 300 | |
if: github.repository == 'apache/spark' | |
steps: | |
- name: Checkout Spark repository | |
uses: actions/checkout@v4 | |
- name: Cache SBT and Maven | |
uses: actions/cache@v4 | |
with: | |
path: | | |
build/apache-maven-* | |
build/*.jar | |
~/.sbt | |
key: build-spark-connect-python-only-${{ hashFiles('**/pom.xml', 'project/build.properties', 'build/mvn', 'build/sbt', 'build/sbt-launch-lib.bash', 'build/spark-build-info') }} | |
restore-keys: | | |
build-spark-connect-python-only- | |
- name: Cache Coursier local repository | |
uses: actions/cache@v4 | |
with: | |
path: ~/.cache/coursier | |
key: coursier-build-spark-connect-python-only-${{ hashFiles('**/pom.xml') }} | |
restore-keys: | | |
coursier-build-spark-connect-python-only- | |
- name: Install Java 17 | |
uses: actions/setup-java@v4 | |
with: | |
distribution: zulu | |
java-version: 17 | |
- name: Install Python 3.11 | |
uses: actions/setup-python@v5 | |
with: | |
python-version: '3.11' | |
architecture: x64 | |
- name: Build Spark | |
run: | | |
./build/sbt -Phive Test/package | |
- name: Install pure Python package (pyspark-connect) | |
env: | |
SPARK_TESTING: 1 | |
run: | | |
cd python | |
python packaging/connect/setup.py sdist | |
cd dist | |
pip install pyspark*connect-*.tar.gz | |
pip install 'six==1.16.0' 'pandas<=2.2.2' scipy 'plotly>=4.8' 'mlflow>=2.8.1' coverage matplotlib openpyxl 'memory-profiler>=0.61.0' 'scikit-learn>=1.3.2' 'graphviz==0.20.3' torch torchvision torcheval deepspeed unittest-xml-reporting 'plotly>=4.8' | |
- name: Run tests | |
env: | |
SPARK_TESTING: 1 | |
SPARK_CONNECT_TESTING_REMOTE: sc://localhost | |
run: | | |
# Make less noisy | |
cp conf/log4j2.properties.template conf/log4j2.properties | |
sed -i 's/rootLogger.level = info/rootLogger.level = warn/g' conf/log4j2.properties | |
# Start a Spark Connect server for local | |
PYTHONPATH="python/lib/pyspark.zip:python/lib/py4j-0.10.9.8-src.zip:$PYTHONPATH" ./sbin/start-connect-server.sh \ | |
--driver-java-options "-Dlog4j.configurationFile=file:$GITHUB_WORKSPACE/conf/log4j2.properties" \ | |
--jars "`find connector/protobuf/target -name spark-protobuf-*SNAPSHOT.jar`,`find connector/avro/target -name spark-avro*SNAPSHOT.jar`" | |
# Remove Py4J and PySpark zipped library to make sure there is no JVM connection | |
mv python/lib lib.back | |
mv python/pyspark pyspark.back | |
# Several tests related to catalog requires to run them sequencially, e.g., writing a table in a listener. | |
./python/run-tests --parallelism=1 --python-executables=python3 --modules pyspark-connect,pyspark-ml-connect | |
# None of tests are dependent on each other in Pandas API on Spark so run them in parallel | |
./python/run-tests --parallelism=1 --python-executables=python3 --modules pyspark-pandas-connect-part0,pyspark-pandas-connect-part1,pyspark-pandas-connect-part2,pyspark-pandas-connect-part3 | |
# Stop Spark Connect server. | |
./sbin/stop-connect-server.sh | |
mv lib.back python/lib | |
mv pyspark.back python/pyspark | |
# Start a Spark Connect server for local-cluster | |
PYTHONPATH="python/lib/pyspark.zip:python/lib/py4j-0.10.9.8-src.zip:$PYTHONPATH" ./sbin/start-connect-server.sh \ | |
--master "local-cluster[2, 4, 1024]" \ | |
--driver-java-options "-Dlog4j.configurationFile=file:$GITHUB_WORKSPACE/conf/log4j2.properties" \ | |
--jars "`find connector/protobuf/target -name spark-protobuf-*SNAPSHOT.jar`,`find connector/avro/target -name spark-avro*SNAPSHOT.jar`" | |
# Remove Py4J and PySpark zipped library to make sure there is no JVM connection | |
mv python/lib lib.back | |
mv python/pyspark lib.back | |
./python/run-tests --parallelism=1 --python-executables=python3 --testnames "pyspark.resource.tests.test_connect_resources,pyspark.sql.tests.connect.client.test_artifact,pyspark.sql.tests.connect.client.test_artifact_localcluster,pyspark.sql.tests.connect.test_resources" | |
- name: Upload test results to report | |
if: always() | |
uses: actions/upload-artifact@v4 | |
with: | |
name: test-results-spark-connect-python-only | |
path: "**/target/test-reports/*.xml" | |
- name: Upload Spark Connect server log file | |
if: ${{ !success() }} | |
uses: actions/upload-artifact@v4 | |
with: | |
name: unit-tests-log-spark-connect-python-only | |
path: logs/*.out |